楕円型偏微分方程式の種々の手法(テキスト)<br>Variational Techniques for Elliptic Partial Differential Equations : Theoretical Tools and Advanced Applications

個数:
電子版価格
¥10,396
  • 電子版あり

楕円型偏微分方程式の種々の手法(テキスト)
Variational Techniques for Elliptic Partial Differential Equations : Theoretical Tools and Advanced Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 514 p.
  • 言語 ENG
  • 商品コード 9781138580886
  • DDC分類 515.3533

Full Description

Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems.

Features




A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields



An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two



Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc.



A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics

Contents

I Fundamentals

1 Distributions

2 The homogeneous Dirichlet problem

3 Lipschitz transformations and Lipschitz domains

4 The nonhomogeneous Dirichlet problem

5 Nonsymmetric and complex problems

6 Neumann boundary conditions

7 Poincare inequalities and Neumann problems

8 Compact perturbations of coercive problems

9 Eigenvalues of elliptic operators

II Extensions and Applications

10 Mixed problems

11 Advanced mixed problems

12 Nonlinear problems

13 Fourier representation of Sobolev spaces

14 Layer potentials

15 A collection of elliptic problems

16 Curl spaces and Maxwell's equations

17 Elliptic equations on boundaries

A Review material

B Glossary

最近チェックした商品