測定誤差モデル・ハンドブック<br>Handbook of Measurement Error Models (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

個数:

測定誤差モデル・ハンドブック
Handbook of Measurement Error Models (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 578 p.
  • 言語 ENG
  • 商品コード 9781138106406
  • DDC分類 511.43

Full Description

Measurement error arises ubiquitously in applications and has been of long-standing concern in a variety of fields, including medical research, epidemiological studies, economics, environmental studies, and survey research. While several research monographs are available to summarize methods and strategies of handling different measurement error problems, research in this area continues to attract extensive attention.

The Handbook of Measurement Error Models provides overviews of various topics on measurement error problems. It collects carefully edited chapters concerning issues of measurement error and evolving statistical methods, with a good balance of methodology and applications. It is prepared for readers who wish to start research and gain insights into challenges, methods, and applications related to error-prone data. It also serves as a reference text on statistical methods and applications pertinent to measurement error models, for researchers and data analysts alike.

Features:




Provides an account of past development and modern advancement concerning measurement error problems



Highlights the challenges induced by error-contaminated data



Introduces off-the-shelf methods for mitigating deleterious impacts of measurement error



Describes state-of-the-art strategies for conducting in-depth research

Contents

1. Measurement Error models - A brief account of past developments and modern advancements. 2. The impact of unacknowledged measurement error. 3. Identifiability in measurement error. 4. Partial learning of misclassification parameters. 5. Using instrumental variables to estimate models with mismeasured regressors. 6. Likelihood Methods for Measurement Error and Misclassification. 7. Regression calibration for covariate measurement error. 8. Conditional and corrected score methods. 9. Semiparametric methods for measurement error and misclassification. 10. Deconvolution kernel density estimation. 11. Nonparametric deconvolution by Fourier transformation and other related approaches. 12. Deconvolution with unknown error distribution. 13. Nonparametric inference methods for Berkson errors. 14. Nonparametric Measurement Errors Models for Regression. 15. Covariate measurement error in survival data. 16. Mixed effects models with measurement errors in time-dependent covariates. 17. Estimation in mixed-effects models with measurement error. 18. Measurement error in dynamic models . 19. Spatial exposure measurement error in environmental epidemiology. 20. Measurement error as a missing data problem. 21. Measurement error in causal inference. 23. Bayesian adjustment for misclassification. 24. Bayesian approaches for handling covariate measurement error

最近チェックした商品