データサイエンスのための特徴抽出・選択:予測モデルへの実践的アプローチ<br>Feature Engineering and Selection : A Practical Approach for Predictive Models (Chapman & Hall/crc Data Science Series)

個数:

データサイエンスのための特徴抽出・選択:予測モデルへの実践的アプローチ
Feature Engineering and Selection : A Practical Approach for Predictive Models (Chapman & Hall/crc Data Science Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 314 p.
  • 言語 ENG
  • 商品コード 9781138079229
  • DDC分類 519.5

Full Description

The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Contents

1. Introduction. 2. Illustrative Example: Predicting Risk of Ischemic Stroke. 3. A Review of the Predictive Modeling Process. 4. Exploratory Visualizations. 5. Encoding Categorical Predictors. 6. Engineering Numeric Predictors. 7. Detecting Interaction Effects. 8. Handling Missing Data. 9. Working with Profile Data. 10. Feature Selection Overview. 11. Greedy Search Methods. 12. Global Search Methods.

最近チェックした商品