M-statistics : Optimal Statistical Inference for a Small Sample

個数:
電子版価格
¥16,089
  • 電子版あり

M-statistics : Optimal Statistical Inference for a Small Sample

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781119891796
  • DDC分類 519.54

Full Description

M-STATISTICS A comprehensive resource providing new statistical methodologies and demonstrating how new approaches work for applications

M-statistics introduces a new approach to statistical inference, redesigning the fundamentals of statistics, and improving on the classical methods we already use. This book targets exact optimal statistical inference for a small sample under one methodological umbrella. Two competing approaches are offered: maximum concentration (MC) and mode (MO) statistics combined under one methodological umbrella, which is why the symbolic equation M=MC+MO. M-statistics defines an estimator as the limit point of the MC or MO exact optimal confidence interval when the confidence level approaches zero, the MC and MO estimator, respectively. Neither mean nor variance plays a role in M-statistics theory.

Novel statistical methodologies in the form of double-sided unbiased and short confidence intervals and tests apply to major statistical parameters:

Exact statistical inference for small sample sizes is illustrated with effect size and coefficient of variation, the rate parameter of the Pareto distribution, two-sample statistical inference for normal variance, and the rate of exponential distributions.
M-statistics is illustrated with discrete, binomial, and Poisson distributions. Novel estimators eliminate paradoxes with the classic unbiased estimators when the outcome is zero.
Exact optimal statistical inference applies to correlation analysis including Pearson correlation, squared correlation coefficient, and coefficient of determination. New MC and MO estimators along with optimal statistical tests, accompanied by respective power functions, are developed.
M-statistics is extended to the multidimensional parameter and illustrated with the simultaneous statistical inference for the mean and standard deviation, shape parameters of the beta distribution, the two-sample binomial distribution, and finally, nonlinear regression.

Our new developments are accompanied by respective algorithms and R codes, available at GitHub, and as such readily available for applications.

M-statistics is suitable for professionals and students alike. It is highly useful for theoretical statisticians and teachers, researchers, and data science analysts as an alternative to classical and approximate statistical inference.

Contents

Preface xi

1 Limitations of classic statistics and motivation 1

1.1 Limitations of classic statistics 2

1.1.1 Mean 2

1.1.2 Unbiasedness 4

1.1.3 Limitations of equal-tail statistical inference 5

1.2 The rationale for a new statistical theory 5

1.3 Motivating example: normal variance 7

1.3.1 Confidence interval for the normal variance 7

1.3.2 Hypothesis testing for the variance 12

1.3.3 MC and MO estimators of the variance 14

1.3.4 Sample size determination for variance 15

1.4 Neyman-Pearson lemma and its extensions 17

1.4.1 Introduction 17

1.4.2 Two lemmas 19

References 28

2 Maximum concentration statistics 31

2.1 Assumptions 31

2.2 Short confidence interval and MC estimator 34

2.3 Density level test 42

2.4 Efficiency and the sufficient statistic 45

2.5 Parameter is positive or belongs to a finite interval 48

2.5.1 Parameter is positive 48

2.5.2 Parameter belongs to a finite interval 50

References 51

3 Mode statistics 53

3.1 Unbiased test 53

3.2 Unbiased CI and MO estimator 58

3.3 Cumulative information and the sufficient statistic 61

References 65

4 P -value and duality 67

4.1 P -value for the double-sided hypothesis 67

4.1.1 General definition 68

4.1.2 P -value for normal variance 72

4.2 The overall powerful test 77

4.3 Duality: converting the CI into a hypothesis test 83

4.4 Bypassing assumptions 85

4.5 Overview 86

References 89

5 M-statistics for major statistical parameters 91

5.1 Exact statistical inference for standard deviation 91

5.1.1 MC-statistics 92

5.1.2 MC-statistics on the log scale 94

5.1.3 MO-statistics 95

5.1.4 Computation of the p-value 95

5.2 Pareto distribution 95

5.2.1 Confidence intervals 96

5.2.2 Hypothesis testing 99

5.3 Coefficient of variation for lognormal distribution 101

5.4 Statistical testing for two variances 103

5.4.1 Computation of the p-value 105

5.4.2 Optimal sample size 106

5.5 Inference for two-sample exponential distribution 106

5.5.1 Unbiased statistical test 108

5.5.2 Confidence intervals 110

5.5.3 The MC estimator of ν 112

5.6 Effect size and coefficient of variation 113

5.6.1 Effect size 114

5.6.2 Coefficient of variation 120

5.6.3 Double-sided hypothesis tests 125

5.6.4 Multivariate ES 126

5.7 Binomial probability 127

5.7.1 The MCL estimator 128

5.7.2 The MCL2 estimator 130

5.7.3 The MCL2 estimator of pn 131

5.7.4 Confidence interval on the double-log scale 132

5.7.5 Equal-tail and unbiased tests 134

5.8 Poisson rate 137

5.8.1 Two-sided short CI on the log scale 138

5.8.2 Two-sided tests and p-value 140

5.8.3 The MCL estimator of the rate parameter 142

5.9 Meta-analysis model 143

5.9.1 CI and MCL estimator 146

5.10 M-statistics for the correlation coefficient 149

5.10.1 MC and MO estimators 150

5.10.2 Equal-tail and unbiased tests 153

5.10.3 Power function and p-value 154

5.10.4 Confidence intervals 156

5.11 The square multiple correlation coefficient 159

5.11.1 Unbiased statistical test 160

5.11.2 Computation of p-value 163

5.11.3 Confidence intervals 164

5.11.4 The two-sided CI on the log scale 165

5.11.5 The MCL estimator 166

5.12 Coefficient of determination for linear model 168

5.12.1 CoD and multiple correlation coefficient 169

5.12.2 Unbiased test 170

5.12.3 The MCL estimator for CoD 171

References 173

6 Multidimensional parameter 177

6.1 Density level test 177

6.2 Unbiased test 180

6.3 Confidence region dual to the DL test 181

6.4 Unbiased confidence region 184

6.5 Simultaneous inference for normal mean and standard deviation 187

6.5.1 Statistical test 187

6.5.2 Confidence region 192

6.6 Exact confidence inference for parameters of the beta distribution 194

6.6.1 Statistical tests 196

6.6.2 Confidence regions 197

6.7 Two-sample binomial probability 199

6.7.1 Hypothesis testing 199

6.7.2 Confidence region 202

6.8 Exact and profile statistical inference for nonlinear regression 204

6.8.1 Statistical inference for the whole parameter 205

6.8.2 Statistical inference for an individual parameter of interest via profiling 210

References 215

Index 219

最近チェックした商品