財務リスク・モデリング:AI・機械学習・深層学習の応用の実際<br>Risk Modeling : Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning (Wiley and Sas Business Series)

個数:
電子版価格
¥4,621
  • 電子版あり

財務リスク・モデリング:AI・機械学習・深層学習の応用の実際
Risk Modeling : Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning (Wiley and Sas Business Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 208 p.
  • 言語 ENG
  • 商品コード 9781119824930
  • DDC分類 658.155

Full Description

A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation

Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process.

Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume:



Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial risk
Discusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniques
Covers the basic principles and nuances of feature engineering and common machine learning algorithms
Illustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycle
Explains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners

Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.

Contents

Acknowledgments xi

Preface xiii

Chapter 1 Introduction 1

Risk Modeling: Definition and Brief History 4

Use of AI and Machine Learning in Risk Modeling 7

The New Risk Management Function 7

Overcoming Barriers to Technology and AI Adoption with a Little Help from Nature 10

This Book: What It Is and Is Not 11

Endnotes 12

Chapter 2 Data Management and Preparation 15

Importance of Data Governance to the Risk Function 18

Fundamentals of Data Management 20

Other Data Considerations for AI, Machine Learning, and Deep Learning 22

Concluding Remarks 29

Endnotes 30

Chapter 3 Artificial Intelligence, Machine Learning, and Deep Learning Models for Risk Management 31

Risk Modeling Using Machine Learning 35

Definitions of AI, Machine, and Deep Learning 40

Concluding Remarks 52

Endnotes 52

Chapter 4 Explaining Artificial Intelligence, Machine Learning, and Deep Learning Models 55

Difference Between Explaining and Interpreting Models 57

Why Explain AI Models 59

Common Approaches to Address Explainability of Data Used for Model Development 61

Common Approaches to Address Explainability of Models and Model Output 62

Limitations in Popular Methods 68

Concluding Remarks 69

Endnotes 69

Chapter 5 Bias, Fairness, and Vulnerability in Decision-Making 71

Assessing Bias in AI Systems 73

What Is Bias? 76

What Is Fairness? 77

Types of Bias in Decision-Making 78

Concluding Remarks 89

Endnotes 89

Chapter 6 Machine Learning Model Deployment, Implementation, and Making Decisions 91

Typical Model Deployment Challenges 93

Deployment Scenarios 98

Case Study: Enterprise Decisioning at a Global Bank 101

Practical Considerations 102

Model Orchestration 103

Concluding Remarks 104

Endnote 104

Chapter 7 Extending the Governance Framework for Machine Learning Validation and Ongoing Monitoring 105

Establishing the Right Internal Governance Framework 108

Developing Machine Learning Models with Governance in Mind 109

Monitoring AI and Machine Learning 112

Compliance Considerations 122

Further Takeaway 125

Concluding Remarks 126

Endnotes 127

Chapter 8 Optimizing Parameters for Machine Learning Models and Decisions in Production 129

Optimization for Machine Learning 131

Machine Learning Function Optimization Using Solvers 133

Tuning of Parameters 136

Other Optimization Algorithms for Risk Models 141

Machine Learning Models as Optimization Tools 143

Concluding Remarks 147

Endnotes 148

Chapter 9 The Interconnection between Climate and Financial Instability 149

Magnitude of Climate Instability: Understanding the "Why" of Climate Change Risk Management 152

Interconnected: Climate and Financial Stability 157

Assessing the impacts of climate change using AI and machine learning 158

Using scenario analysis to understand potential economic impact 160

Practical Examples 170

Concluding Remarks 172

Endnotes 172

About the Authors 175

Index 177

最近チェックした商品