サイバーセキュリティのためのゲーム理論と機械学習<br>Game Theory and Machine Learning for Cyber Security

個数:
電子版価格
¥17,976
  • 電子版あり

サイバーセキュリティのためのゲーム理論と機械学習
Game Theory and Machine Learning for Cyber Security

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 544 p.
  • 言語 ENG
  • 商品コード 9781119723929
  • DDC分類 621

Full Description

GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field

In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security.

Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges.

Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning.

Readers will also enjoy:

A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception
An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats
Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems
In-depth examinations of generative models for cyber security

Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.

Contents

Editor biographies

Contributors

Foreword

Preface

 

Chapter 1:           Introduction

Christopher D. Kiekintveld, Charles A. Kamhoua, Fei Fang, Quanyan Zhu

 

Part 1:   Game Theory for Cyber Deception

 

Chapter 2:           Introduction to Game Theory

Fei Fang, Shutian Liu, Anjon Basak, Quanyan Zhu, Christopher Kiekintveld, Charles A. Kamhoua

 

Chapter 3:           Scalable Algorithms for Identifying Stealthy Attackers in a Game Theoretic Framework Using Deception

Anjon Basak, Charles Kamhoua, Sridhar Venkatesan, Marcus Gutierrez, Ahmed H. Anwar, Christopher Kiekintveld

 

Chapter 4:           Honeypot Allocation Game over Attack Graphs for Cyber Deception

Ahmed H. Anwar, Charles Kamhoua, Nandi Leslie, Christopher Kiekintveld

 

Chapter 5:           Evaluating Adaptive Deception Strategies for Cyber Defense with Human Experimentation

Palvi Aggarwal, Marcus Gutierrez, Christopher Kiekintveld, Branislav Bosansky, Cleotilde Gonzalez

 

Chapter 6:           A Theory of Hypergames on Graphs for Synthesizing Dynamic Cyber Defense with Deception

Jie Fu, Abhishek N. Kulkarni

 

Part 2:   Game Theory for Cyber Security

 

Chapter 7:           Minimax Detection (MAD) for Computer Security: A Dynamic Program Characterization

Muhammed O. Sayin, Dinuka Sahabandu, Muhammad Aneeq uz Zaman, Radha Poovendran, Tamer Başar

 

Chapter 8:           Sensor Manipulation Games in Cyber Security

João P. Hespanha

 

Chapter 9:           Adversarial Gaussian Process Regression in Sensor Networks

Yi Li, Xenofon Koutsoukos, Yevgeniy Vorobeychik

 

Chapter 10:        Moving Target Defense Games for Cyber Security: Theory and Applications Abdelrahman Eldosouky, Shamik Sengupta

 

Chapter 11:        Continuous Authentication Security Games

Serkan Saritas, Ezzeldin Shereen, Henrik Sandberg, Gyorgy Dan

Chapter 12:        Cyber Autonomy in Software Security: Techniques and Tactics

Tiffany Bao, Yan Shoshitaishvili

 

Part 3:   Adversarial Machine Learning for Cyber Security

 

Chapter 13:        A Game Theoretic Perspective on Adversarial Machine Learning and Related Cybersecurity Applications

Yan Zhou, Murat Kantarcioglu, Bowei Xi

 

Chapter 14:        Adversarial Machine Learning in 5G Communications Security

Yalin Sagduyu, Tugba Erpek, Yi Shi

 

Chapter 15:        Machine Learning in the Hands of a Malicious Adversary: A Near Future If Not Reality Keywhan Chung, Xiao Li, Peicheng Tang, Zeran Zhu, Zbigniew T. Kalbarczyk, Thenkurussi Kesavadas, Ravishankar K. Iyer

 

Chapter 16:        Trinity: Trust, Resilience and Interpretability of Machine Learning Models

Susmit Jha, Anirban Roy, Brian Jalaian, Gunjan Verma

 

Part 4:   Generative Models for Cyber Security

 

Chapter 17:        Evading Machine Learning based Network Intrusion Detection Systems with GANs Bolor-Erdene Zolbayar, Ryan Sheatsley, Patrick McDaniel, Mike Weisman

 

Chapter 18:        Concealment Charm (ConcealGAN): Automatic Generation of Steganographic Text using Generative Models to Bypass Censorship

Nurpeiis Baimukan, Quanyan Zhu

 

Part 5:   Reinforcement Learning for Cyber Security

 

Chapter 19:        Manipulating Reinforcement Learning: Stealthy Attacks on Cost Signals

Yunhan Huang, Quanyan Zhu

 

Chapter 20:        Resource-Aware Intrusion Response based on Deep Reinforcement Learning for Software-Defined Internet-of-Battle-Things

Seunghyun Yoon, Jin-Hee Cho, Gaurav Dixit, Ing-Ray Chen

 

Part 6:   Other Machine Learning approach to Cyber Security

 

Chapter 21:        Smart Internet Probing: Scanning Using Adaptive Machine Learning

Armin Sarabi, Kun Jin, Mingyan Liu

 

Chapter 22:        Semi-automated Parameterization of a Probabilistic Model using Logistic Regression - A Tutorial

Stefan Rass, Sandra König, Stefan Schauer

 

Chapter 23:        Resilient Distributed Adaptive Cyber-Defense using Blockchain

George Cybenko, Roger A. Hallman

 

Chapter 24:        Summary and Future Work

Quanyan Zhu, Fei Fang