Industrial Data Analytics for Diagnosis and Prognosis : A Random Effects Modelling Approach

個数:
電子版価格
¥19,099
  • 電子版あり
  • ポイントキャンペーン

Industrial Data Analytics for Diagnosis and Prognosis : A Random Effects Modelling Approach

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781119666288
  • DDC分類 658.00727

Full Description

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model  

In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book's two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 

In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 



A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions 
Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model
An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis
A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals

Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis. 

Contents

Chapter 1 Introduction

Part 1 Statistical Methods and Foundation for Industrial Data Analytics

Chapter 2 Introduction to Data Visualization andChapteraracterization

Chapter 3 Random Vectors and the Multivariate Normal Distribution

Chapter 4 Explaining Covariance Structure: Principal Components

Chapter 5 Linear Model for Numerical and Categorical

Chapter 6 Linear Mixed Effects Model

Part 2 Random Effects Approaches for Diagnosis and Prognosis

Chapter 7 Diagnosis of Variation Source Using PCA

Chapter 8 Diagnosis of Variation Sources Through Random Effects Estimation

Chapter 9 Analysis of System Diagnosability

Chapter 10 Prognosis Through Mixed Effects Models for Longitudinal Data

Chapter 11 Prognosis Using Gaussian Process Model

Chapter 12 Prognosis Through Mixed Effects Models for Time-to-Event Data

Appendix: Basics of Vectors, Matrices, and Linear Vector Space

References

Index

最近チェックした商品