- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
A synergy of techniques on hybrid intelligence for real-life image analysis
 Hybrid Intelligence for Image Analysis and Understanding brings together research on the latest results and progress in the development of hybrid intelligent techniques for faithful image analysis and understanding. As such, the focus is on the methods of computational intelligence, with an emphasis on hybrid intelligent methods applied to image analysis and understanding.
 The book offers a diverse range of hybrid intelligence techniques under the umbrellas of image thresholding, image segmentation, image analysis and video analysis.
 Key features:
 
Provides in-depth analysis of hybrid intelligent paradigms.
Divided into self-contained chapters.
Provides ample case studies, illustrations and photographs of real-life examples to illustrate findings and applications of different hybrid intelligent paradigms.
Offers new solutions to recent problems in computer science, specifically in the application of hybrid intelligent techniques for image analysis and understanding, using well-known contemporary algorithms.
 The book is essential reading for lecturers, researchers and graduate students in electrical engineering and computer science.
Contents
Editor Biographies xvii
 List of Contributors xxi
 Foreword xxvii
 Preface xxxi
 About the Companion website xxxv
 1 Multilevel Image Segmentation UsingModified Genetic Algorithm (MfGA)-based Fuzzy C-Means 1
Sourav De, Sunanda Das, Siddhartha Bhattacharyya, and Paramartha Dutta
 1.1 Introduction 1
 1.2 Fuzzy C-Means Algorithm 5
 1.3 Modified Genetic Algorithms 6
 1.4 Quality Evaluation Metrics for Image Segmentation 8
 1.4.1 Correlation Coefficient 8
 1.4.2 Empirical Measure Q(I) 8
 1.5 MfGA-Based FCM Algorithm 9
 1.6 Experimental Results and Discussion 11
 1.7 Conclusion 22
 References 22
 2 Character Recognition Using Entropy-Based Fuzzy C-Means Clustering 25
B. Kondalarao, S. Sahoo, and D.K. Pratihar
 2.1 Introduction 25
 2.2 Tools and Techniques Used 27
 2.2.1 Fuzzy Clustering Algorithms 27
 2.2.1.1 Fuzzy C-means Algorithm 28
 2.2.1.2 Entropy-based Fuzzy Clustering 29
 2.2.1.3 Entropy-based Fuzzy C-Means Algorithm 29
 2.2.2 Sammon's Nonlinear Mapping 30
 2.3 Methodology 31
 2.3.1 Data Collection 31
 2.3.2 Preprocessing 31
 2.3.3 Feature Extraction 32
 2.3.4 Classification and Recognition 34
 2.4 Results and Discussion 34
 2.5 Conclusion and Future Scope ofWork 38
 References 39
 Appendix 41
 3 A Two-Stage Approach to Handwritten Indic Script Identification 47
Pawan Kumar Singh, Supratim Das, Ram Sarkar, andMita Nasipuri
 3.1 Introduction 47
 3.2 Review of RelatedWork 48
 3.3 Properties of Scripts Used in the PresentWork 51
 3.4 ProposedWork 52
 3.4.1 DiscreteWavelet Transform 53
 3.4.1.1 HaarWavelet Transform 55
 3.4.2 Radon Transform (RT) 57
 3.5 Experimental Results and Discussion 63
 3.5.1 Evaluation of the Present Technique 65
 3.5.1.1 Statistical Significance Tests 66
 3.5.2 Statistical Performance Analysis of SVM Classifier 68
 3.5.3 Comparison with Other RelatedWorks 71
 3.5.4 Error Analysis 73
 3.6 Conclusion 74
 Acknowledgments 75
 References 75
 4 Feature Extraction and Segmentation Techniques in a Static Hand Gesture Recognition System 79
Subhamoy Chatterjee, Piyush Bhandari, and Mahesh Kumar Kolekar
 4.1 Introduction 79
 4.2 Segmentation Techniques 81
 4.2.1 Otsu Method for Gesture Segmentation 81
 4.2.2 Color Space-Based Models for Hand Gesture Segmentation 82
 4.2.2.1 RGB Color Space-Based Segmentation 82
 4.2.2.2 HSI Color Space-Based Segmentation 83
 4.2.2.3 YCbCr Color Space-Based Segmentation 83
 4.2.2.4 YIQ Color Space-Based Segmentation 83
 4.2.3 Robust Skin Color Region Detection Using K-Means Clustering and Mahalanobish Distance 84
 4.2.3.1 Rotation Normalization 85
 4.2.3.2 Illumination Normalization 85
 4.2.3.3 Morphological Filtering 85
 4.3 Feature Extraction Techniques 86
 4.3.1 Theory of Moment Features 86
 4.3.2 Contour-Based Features 88
 4.4 State of the Art of Static Hand Gesture Recognition Techniques 89
 4.4.1 Zoning Methods 90
 4.4.2 F-Ratio-BasedWeighted Feature Extraction 90
 4.4.3 Feature Fusion Techniques 91
 4.5 Results and Discussion 92
 4.5.1 Segmentation Result 93
 4.5.2 Feature Extraction Result 94
 4.6 Conclusion 97
 4.6.1 FutureWork 99
 Acknowledgment 99
 References 99
 5 SVM Combination for an Enhanced Prediction ofWriters' Soft Biometrics 103
Nesrine Bouadjenek, Hassiba Nemmour, and Youcef Chibani
 5.1 Introduction 103
 5.2 Soft Biometrics and Handwriting Over Time 104
 5.3 Soft Biometrics Prediction System 106
 5.3.1 Feature Extraction 107
 5.3.1.1 Local Binary Patterns 107
 5.3.1.2 Histogram of Oriented Gradients 108
 5.3.1.3 Gradient Local Binary Patterns 108
 5.3.2 Classification 109
 5.3.3 Fuzzy Integrals-Based Combination Classifier 111
 5.3.3.1 g�� Fuzzy Measure 111
 5.3.3.2 Sugeno's Fuzzy Integral 113
 5.3.3.3 Fuzzy Min-Max 113
 5.4 Experimental Evaluation 113
 5.4.1 Data Sets 113
 5.4.1.1 IAM Data Set 113
 5.4.1.2 KHATT Data Set 114
 5.4.2 Experimental Setting 114
 5.4.3 Gender Prediction Results 117
 5.4.4 Handedness Prediction Results 117
 5.4.5 Age Prediction Results 118
 5.5 Discussion and Performance Comparison 118
 5.6 Conclusion 120
 References 121
 6 Brain-Inspired Machine Intelligence for Image Analysis: Convolutional Neural Networks 127
Siddharth Srivastava and Brejesh Lall
 6.1 Introduction 127
 6.2 Convolutional Neural Networks 129
 6.2.1 Building Blocks 130
 6.2.1.1 Perceptron 134
 6.2.2 Learning 135
 6.2.2.1 Gradient Descent 136
 6.2.2.2 Back-Propagation 136
 6.2.3 Convolution 139
 6.2.4 Convolutional Neural Networks:The Architecture 141
 6.2.4.1 Convolution Layer 142
 6.2.4.2 Pooling Layer 145
 6.2.4.3 Dense or Fully Connected Layer 146
 6.2.5 Considerations in Implementation of CNNs 146
 6.2.6 CNN in Action 147
 6.2.7 Tools for Convolutional Neural Networks 148
 6.2.8 CNN Coding Examples 148
 6.2.8.1 MatConvNet 148
 6.2.8.2 Visualizing a CNN 149
 6.2.8.3 Image Category Classification Using Deep Learning 153
 6.3 Toward Understanding the Brain, CNNs, and Images 157
 6.3.1 Applications 157
 6.3.2 Case Studies 158
 6.4 Conclusion 159
 References 159
 7 Human Behavioral Analysis Using Evolutionary Algorithms and Deep Learning 165
Earnest Paul Ijjina and Chalavadi Krishna Mohan
 7.1 Introduction 165
 7.2 Human Action Recognition Using Evolutionary Algorithms and Deep Learning 167
 7.2.1 Evolutionary Algorithms for Search Optimization 168
 7.2.2 Action Bank Representation for Action Recognition 168
 7.2.3 Deep Convolutional Neural Network for Human Action Recognition 169
 7.2.4 CNN Classifier Optimized Using Evolutionary Algorithms 170
 7.3 Experimental Study 170
 7.3.1 Evaluation on the UCF50 Data Set 170
 7.3.2 Evaluation on the KTH Video Data Set 172
 7.3.3 Analysis and Discussion 176
 7.3.4 Experimental Setup and Parameter Optimization 177
 7.3.5 Computational Complexity 182
 7.4 Conclusions and FutureWork 183
 References 183
 8 Feature-Based Robust Description andMonocular Detection: An Application to Vehicle Tracking 187
Ramazan Yíldíz and Tankut Acarman
 8.1 Introduction 187
 8.2 Extraction of Local Features by SIFT and SURF 188
 8.3 Global Features: Real-Time Detection and Vehicle Tracking 190
 8.4 Vehicle Detection and Validation 194
 8.4.1 X-Analysis 194
 8.4.2 Horizontal Prominent Line Frequency Analysis 195
 8.4.3 Detection History 196
 8.5 Experimental Study 197
 8.5.1 Local Features Assessment 197
 8.5.2 Global Features Assessment 197
 8.5.3 Local versus Global Features Assessment 201
 8.6 Conclusions 201
 References 202
 9 A GIS Anchored Technique for Social Utility Hotspot Detection 205
Anirban Chakraborty, J.K.Mandal, Arnab Patra, and JayatraMajumdar
 9.1 Introduction 205
 9.2 The Technique 207
 9.3 Case Study 209
 9.4 Implementation and Results 221
 9.5 Analysis and Comparisons 224
 9.6 Conclusions 229
 Acknowledgments 229
 References 230
 10 Hyperspectral Data Processing: Spectral Unmixing, Classification, and Target Identification 233
Vaibhav Lodhi, Debashish Chakravarty, and PabitraMitra
 10.1 Introduction 233
 10.2 Background and Hyperspectral Imaging System 234
 10.3 Overview of Hyperspectral Image Processing 236
 10.3.1 Image Acquisition 237
 10.3.2 Calibration 237
 10.3.3 Spatial and Spectral preprocessing 238
 10.3.4 Dimension Reduction 239
 10.3.4.1 Transformation-Based Approaches 239
 10.3.4.2 Selection-Based Approaches 239
 10.3.5 postprocessing 240
 10.4 Spectral Unmixing 240
 10.4.1 Unmixing Processing Chain 240
 10.4.2 Mixing Model 241
 10.4.2.1 Linear Mixing Model (LMM) 242
 10.4.2.2 Nonlinear Mixing Model 242
 10.4.3 Geometrical-Based Approaches to Linear Spectral Unmixing 243
 10.4.3.1 Pure Pixel-Based Techniques 243
 10.4.3.2 Minimum Volume-Based Techniques 244
 10.4.4 Statistics-Based Approaches 244
 10.4.5 Sparse Regression-Based Approach 245
 10.4.5.1 Moore-Penrose Pseudoinverse (MPP) 245
 10.4.5.2 Orthogonal Matching Pursuit (OMP) 246
 10.4.5.3 Iterative Spectral Mixture Analysis (ISMA) 246
 10.4.6 Hybrid Techniques 246
 10.5 Classification 247
 10.5.1 Feature Mining 247
 10.5.1.1 Feature Selection (FS) 248
 10.5.1.2 Feature Extraction 248
 10.5.2 Supervised Classification 248
 10.5.2.1 Minimum Distance Classifier 249
 10.5.2.2 Maximum Likelihood Classifier (MLC) 250
 10.5.2.3 Support Vector Machines (SVMs) 250
 10.5.3 Hybrid Techniques 250
 10.6 Target Detection 251
 10.6.1 Anomaly Detection 251
 10.6.1.1 RX Anomaly Detection 252
 10.6.1.2 Subspace-Based Anomaly Detection 253
 10.6.2 Signature-Based Target Detection 253
 10.6.2.1 Euclidean distance 254
 10.6.2.2 Spectral Angle Mapper (SAM) 254
 10.6.2.3 Spectral Matched Vilter (SMF) 254
 10.6.2.4 Matched Subspace Detector (MSD) 255
 10.6.3 Hybrid Techniques 255
 10.7 Conclusions 256
 References 256
 11 A Hybrid Approach for Band Selection of Hyperspectral Images 263
Aditi Roy Chowdhury, Joydev Hazra, and Paramartha Dutta
 11.1 Introduction 263
 11.2 Relevant Concept Revisit 266
 11.2.1 Feature Extraction 266
 11.2.2 Feature Selection Using 2D PCA 266
 11.2.3 Immune Clonal System 267
 11.2.4 Fuzzy KNN 268
 11.3 Proposed Algorithm 271
 11.4 Experiment and Result 271
 11.4.1 Description of the Data Set 272
 11.4.2 Experimental Details 274
 11.4.3 Analysis of Results 275
 11.5 Conclusion 278
 References 279
 12 Uncertainty-Based Clustering Algorithms for Medical Image Analysis 283
Deepthi P. Hudedagaddi and B.K. Tripathy
 12.1 Introduction 283
 12.2 Uncertainty-Based Clustering Algorithms 283
 12.2.1 Fuzzy C-Means 284
 12.2.2 Rough Fuzzy C-Means 285
 12.2.3 Intuitionistic Fuzzy C-Means 285
 12.2.4 Rough Intuitionistic Fuzzy C-Means 286
 12.3 Image Processing 286
 12.4 Medical Image Analysis with Uncertainty-Based Clustering Algorithms 287
 12.4.1 FCM with Spatial Information for Image Segmentation 287
 12.4.2 Fast and Robust FCM Incorporating Local Information for Image Segmentation 290
 12.4.3 Image Segmentation Using Spatial IFCM 291
 12.4.3.1 Applications of Spatial FCM and Spatial IFCM on Leukemia Images 292
 12.5 Conclusions 293
 References 293
 13 An Optimized Breast Cancer Diagnosis SystemUsing a Cuckoo Search Algorithm and Support Vector Machine Classifier 297
Manoharan Prabukumar, Loganathan Agilandeeswari, and Arun Kumar Sangaiah
 13.1 Introduction 297
 13.2 Technical Background 301
 13.2.1 Morphological Segmentation 301
 13.2.2 Cuckoo Search Optimization Algorithm 302
 13.2.3 Support Vector Machines 303
 13.3 Proposed Breast Cancer Diagnosis System 303
 13.3.1 Preprocessing of Breast Cancer Image 303
 13.3.2 Feature Extraction 304
 13.3.2.1 Geometric Features 304
 13.3.2.2 Texture Features 305
 13.3.2.3 Statistical Features 306
 13.3.3 Features Selection 306
 13.3.4 Features Classification 307
 13.4 Results and Discussions 307
 13.5 Conclusion 310
 13.6 FutureWork 310
 References 310
 14 Analysis of Hand Vein Images Using Hybrid Techniques 315
R. Sudhakar, S. Bharathi, and V. Gurunathan
 14.1 Introduction 315
 14.2 Analysis of Vein Images in the Spatial Domain 318
 14.2.1 Preprocessing 318
 14.2.2 Feature Extraction 319
 14.2.3 Feature-Level Fusion 320
 14.2.4 Score Level Fusion 320
 14.2.5 Results and Discussion 322
 14.2.5.1 Evaluation Metrics 323
 14.3 Analysis of Vein Images in the Frequency Domain 326
 14.3.1 Preprocessing 326
 14.3.2 Feature Extraction 326
 14.3.3 Feature-Level Fusion 330
 14.3.4 Support Vector Machine Classifier 331
 14.3.5 Results and Discussion 331
 14.4 Comparative Analysis of Spatial and Frequency Domain Systems 332
 14.5 Conclusion 335
 References 335
 15 Identification of Abnormal Masses in Digital Mammogram Using Statistical Decision Making 339
Indra Kanta Maitra and Samir Kumar Bandyopadhyay
 15.1 Introduction 339
 15.1.1 Breast Cancer 339
 15.1.2 Computer-Aided Detection/Diagnosis (CAD) 340
 15.1.3 Segmentation 340
 15.2 PreviousWorks 341
 15.3 Proposed Method 343
 15.3.1 Preparation 343
 15.3.2 Preprocessing 345
 15.3.2.1 Image Enhancement and Edge Detection 346
 15.3.2.2 Isolation and Suppression of Pectoral Muscle 348
 15.3.2.3 Breast Contour Detection 351
 15.3.2.4 Anatomical Segmentation 353
 15.3.3 Identification of Abnormal Region(s) 354
 15.3.3.1 Coloring of Regions 354
 15.3.3.2 Statistical Decision Making 355
 15.4 Experimental Result 358
 15.4.1 Case Study with Normal Mammogram 358
 15.4.2 Case Study with Abnormalities Embedded in Fatty Tissues 358
 15.4.3 Case Study with Abnormalities Embedded in Fatty-Fibro-Glandular Tissues 359
 15.4.4 Case Study with Abnormalities Embedded in Dense-Fibro-Glandular Tissues 359
 15.5 Result Evaluation 360
 15.5.1 Statistical Analysis 361
 15.5.2 ROC Analysis 361
 15.5.3 Accuracy Estimation 365
 15.6 Comparative Analysis 366
 15.7 Conclusion 366
 Acknowledgments 366
 References 367
 16 Automatic Detection of Coronary Artery Stenosis Using Bayesian Classification and Gaussian Filters Based on Differential Evolution 369
Ivan Cruz-Aceves, Fernando Cervantes-Sanchez, and Arturo Hernandez-Aguirre
 16.1 Introduction 369
 16.2 Background 370
 16.2.1 Gaussian Matched Filters 371
 16.2.2 Differential Evolution 371
 16.2.2.1 Example: Global Optimization of the Ackley Function 373
 16.2.3 Bayesian Classification 375
 16.2.3.1 Example: Classification Problem 375
 16.3 Proposed Method 377
 16.3.1 Optimal Parameter Selection of GMF Using Differential Evolution 377
 16.3.2 Thresholding of the Gaussian Filter Response 378
 16.3.3 Stenosis Detection Using Second-Order Derivatives 378
 16.3.4 Stenosis Detection Using Bayesian Classification 379
 16.4 Computational Experiments 381
 16.4.1 Results of Vessel Detection 382
 16.4.2 Results of Vessel Segmentation 382
 16.4.3 Evaluation of Detection of Coronary Artery Stenosis 384
 16.5 Concluding Remarks 386
 Acknowledgment 388
 References 388
 17 Evaluating the Efficacy of Multi-resolution Texture Features for Prediction of Breast Density UsingMammographic Images 391
Kriti, Harleen Kaur, and Jitendra Virmani
 17.1 Introduction 391
 17.1.1 Comparison of Related Methods with the Proposed Method 397
 17.2 Materials and Methods 398
 17.2.1 Description of Database 398
 17.2.2 ROI Extraction Protocol 398
 17.2.3 Workflow for CAD System Design 398
 17.2.3.1 Feature Extraction 400
 17.2.3.2 Classification 407
 17.3 Results 410
 17.3.1 Results Based on Classification Performance of the Classifiers (Classification Accuracy and Sensitivity) for Each Class 411
 17.3.1.1 Experiment I: To Determine the Performance of Different FDVs Using SVM Classifier 411
 17.3.1.2 Experiment II: To Determine the Performance of Different FDVs Using SSVM Classifier 412
 17.3.2 Results Based on Computational Efficiency of Classifiers for Predicting 161 Instances of Testing Dataset 412
 17.4 Conclusion and Future Scope 413
 References 415
 Index 423


 
               
               
               
              


