Data Analysis Using SQL and Excel -- Paperback (2 Rev ed)

個数:
電子版価格
¥6,631
  • 電子版あり

Data Analysis Using SQL and Excel -- Paperback (2 Rev ed)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781119021438
  • DDC分類 005

Full Description

A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the "where" and "why" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way.

Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS.



Understand core analytic techniques that work with SQL and Excel
Ensure your analytic approach gets you the results you need
Design and perform your analysis using SQL and Excel

Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.

Contents

Foreword xxxiii

Introduction xxxvii

Chapter 1 A Data Miner Looks at SQL 1

Databases, SQL, and Big Data 2

Picturing the Structure of the Data 6

Picturing Data Analysis Using Dataflows 16

SQL Queries 21

Subqueries and Common Table Expressions Are Our Friends 36

Lessons Learned 47

Chapter 2 What's in a Table? Getting Started with Data Exploration 49

What Is Data Exploration? 50

Excel for Charting 51

Sparklines 65

What Values Are in the Columns? 68

More Values to Explore—Min, Max, and Mode 79

Exploring String Values 81

Exploring Values in Two Columns 86

From Summarizing One Column to Summarizing All Columns 90

Lessons Learned 96

Chapter 3 How Different Is Different? 97

Basic Statistical Concepts 98

How Different Are the Averages? 105

Sampling from a Table 110

Counting Possibilities 115

Ratios and Their Statistics 128

Chi-Square 132

What Months and Payment Types Have Unusual Affinities for Which Types of Products? 140

Lessons Learned 143

Chapter 4 Where Is It All Happening? Location, Location, Location 145

Latitude and Longitude 146

Census Demographics 160

Geographic Hierarchies 172

Mapping in Excel 188

Lessons Learned 194

Chapter 5 It's a Matter of Time 197

Dates and Times in Databases 198

Starting to Investigate Dates 204

How Long Between Two Dates? 218

Year-over-Year Comparisons 229

Counting Active Customers by Day 239

Simple Chart Animation in Excel 247

Lessons Learned 254

Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255

Background on Survival Analysis 256

The Hazard Calculation 260

Survival and Retention 269

Comparing Different Groups of Customers 280

Comparing Survival over Time 287

Important Measures Derived from Survival 293

Using Survival for Customer Value Calculations 298

Forecasting 308

Lessons Learned 314

Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315

Which Factors Are Important and When 316

Left Truncation 328

Time Windowing 336

Competing Risks 342

Before and After 353

Lessons Learned 366

Chapter 8 Customer Purchases and Other Repeated Events 367

Identifying Customers 368

RFM Analysis 393

Which Households Are Increasing Purchase Amounts Over Time? 404

Time to Next Event 416

Lessons Learned 420

Chapter 9 What's in a Shopping Cart? Market Basket Analysis 421

Exploring the Products 422

Products and Customer Worth 437

Product Geographic Distribution 448

Which Customers Have Particular Products? 451

Lessons Learned 463

Chapter 10 Association Rules and Beyond 465

Item Sets 466

The Simplest Association Rules 480

One-Way Association Rules 483

Two-Way Associations 489

Extending Association Rules 499

Lessons Learned 506

Chapter 11 Data Mining Models in SQL 507

Introduction to Directed Data Mining 508

Look-Alike Models 515

Lookup Model for Most Popular Product 522

Lookup Model for Order Size 528

Lookup Model for Probability of Response 534

Naive Bayesian Models (Evidence Models) 546

Lessons Learned 559

Chapter 12 The Best-Fit Line: Linear Regression Models 561

The Best-Fit Line 562

Measuring Goodness of Fit Using R2 581

Direct Calculation of Best-Fit Line Coefficients 584

Weighted Linear Regression 592

More Than One Input Variable 600

Lessons Learned 607

Chapter 13 Building Customer Signatures for Further Analysis 609

What Is a Customer Signature? 610

Designing Customer Signatures 617

Operations to Build Customer Signatures 622

Extracting Features 639

Summarizing Customer Behaviors 644

Lessons Learned 653

Chapter 14 Performance Is the Issue: Using SQL Effectively 655

Query Engines and Performance 656

Considerations When Thinking About Performance 660

Performance: Its Meaning and Measurement 663

Performance Improvement 101 665

Using Indexes Effectively 668

When OR Is a Bad Thing 683

Pros and Cons: Different Ways of Expressing the Same Thing 686

Window Functions 694

Lessons Learned 701

Appendix Equivalent Constructs Among Databases 703

Index 731

最近チェックした商品