石油・ガス産業におけるビッグデータ解析<br>Harness Oil and Gas Big Data with Analytics : Optimize Exploration and Production with Data-Driven Models (Wiley and Sas Business Series)

個数:
電子版価格
¥10,050
  • 電子版あり

石油・ガス産業におけるビッグデータ解析
Harness Oil and Gas Big Data with Analytics : Optimize Exploration and Production with Data-Driven Models (Wiley and Sas Business Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 364 p.
  • 言語 ENG
  • 商品コード 9781118779316
  • DDC分類 333

Full Description

Use big data analytics to efficiently drive oil and gas exploration and production Harness Oil and Gas Big Data with Analytics provides a complete view of big data and analytics techniques as they are applied to the oil and gas industry. Including a compendium of specific case studies, the book underscores the acute need for optimization in the oil and gas exploration and production stages and shows how data analytics can provide such optimization. This spans exploration, development, production and rejuvenation of oil and gas assets.

The book serves as a guide for fully leveraging data, statistical, and quantitative analysis, exploratory and predictive modeling, and fact-based management to drive decision making in oil and gas operations. This comprehensive resource delves into the three major issues that face the oil and gas industry during the exploration and production stages:



Data management, including storing massive quantities of data in a manner conducive to analysis and effectively retrieving, backing up, and purging data
Quantification of uncertainty, including a look at the statistical and data analytics methods for making predictions and determining the certainty of those predictions
Risk assessment, including predictive analysis of the likelihood that known risks are realized and how to properly deal with unknown risks

Covering the major issues facing the oil and gas industry in the exploration and production stages, Harness Big Data with Analytics reveals how to model big data to realize efficiencies and business benefits.

Contents

Preface xi

Chapter 1 Fundamentals of Soft Computing 1

Current Landscape in Upstream Data Analysis 2

Evolution from Plato to Aristotle 9

Descriptive and Predictive Models 10

The SEMMA Process 13

High-Performance Analytics 14

Three Tenets of Upstream Data 18

Exploration and Production Value Propositions 20

Oilfield Analytics 22

I am a. . . 27

Notes 31

Chapter 2 Data Management 33

Exploration and Production Value Proposition 34

Data Management Platform 36

Array of Data Repositories 45

Structured Data and Unstructured Data 49

Extraction, Transformation, and Loading Processes 50

Big Data Big Analytics 52

Standard Data Sources 54

Case Study: Production Data Quality Control Framework 55

Best Practices 57

Notes 62

Chapter 3 Seismic Attribute Analysis 63

Exploration and Production Value Propositions 63

Time-Lapse Seismic Exploration 64

Seismic Attributes 65

Reservoir Characterization 68

Reservoir Management 69

Seismic Trace Analysis 69

Case Study: Reservoir Properties Defined by Seismic Attributes 90

Notes 106

Chapter 4 Reservoir Characterization and Simulation 107

Exploration and Production Value Propositions 108

Exploratory Data Analysis 111

Reservoir Characterization Cycle 114

Traditional Data Analysis 114

Reservoir Simulation Models 116

Case Studies 122

Notes 138

Chapter 5 Drilling and Completion Optimization 139

Exploration and Production Value Propositions 140

Workflow One: Mitigation of Nonproductive Time 142

Workflow Two: Drilling Parameter Optimization 151

Case Studies 154

Notes 173

Chapter 6 Reservoir Management 175

Exploration and Production Value Propositions 177

Digital Oilfield of the Future 179

Analytical Center of Excellence 185

Analytical Workflows: Best Practices 188

Case Studies 192

Notes 212

Chapter 7 Production Forecasting 213

Exploration and Production Value Propositions 214

Web-Based Decline Curve Analysis Solution 216

Unconventional Reserves Estimation 235

Case Study: Oil Production Prediction for Infill Well 237

Notes 242

Chapter 8 Production Optimization 243

Exploration and Production Value Propositions 245

Case Studies 246

Notes 273

Chapter 9 Exploratory and Predictive Data Analysis 275

Exploration and Production Value Propositions 276

EDA Components 278

EDA Statistical Graphs and Plots 284

Ensemble Segmentations 290

Data Visualization 292

Case Studies 296

Notes 308

Chapter 10 Big Data: Structured and Unstructured 309

Exploration and Production Value Propositions 312

Hybrid Expert and Data-Driven System 315

Case Studies 321

Multivariate Geostatistics 330

Big Data Workflows 332

Integration of Soft Computing Techniques 336

Notes 341

Glossary 343

About the Author 349

Index 351

最近チェックした商品