積分学入門<br>Introduction to Integral Calculus : Systematic Studies with Engineering Applications for Beginners

個数:
電子版価格
¥18,001
  • 電子版あり

積分学入門
Introduction to Integral Calculus : Systematic Studies with Engineering Applications for Beginners

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 402 p.
  • 言語 ENG
  • 商品コード 9781118117767
  • DDC分類 515.43

Full Description

An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences

I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving.

The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including:



Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals


Defining the natural logarithmic function using calculus


Evaluating definite integrals


Calculating plane areas bounded by curves


Applying basic concepts of differential equations to solve ordinary differential equations



With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.

Contents

FOREWORD ix PREFACE xiii

BIOGRAPHIES xxi

INTRODUCTION xxiii

ACKNOWLEDGMENT xxv

1 Antiderivative(s) [or Indefinite Integral(s)] 1

1.1 Introduction 1

1.2 Useful Symbols, Terms, and Phrases Frequently Needed 6

1.3 Table(s) of Derivatives and their corresponding Integrals 7

1.4 Integration of Certain Combinations of Functions 10

1.5 Comparison Between the Operations of Differentiation and Integration 15

2 Integration Using Trigonometric Identities 17

2.1 Introduction 17

2.2 Some Important Integrals Involving sin x and cos x 34

2.3 Integrals of the Form ? (d/( a sin  + b cos x)), where a, b 

ϵ r 37

3a Integration by Substitution: Change of Variable of Integration 43

3b Further Integration by Substitution: Additional Standard Integrals 67

4a Integration by Parts 97

4b Further Integration by Parts: Where the Given Integral Reappears on Right-Hand Side 117

5 Preparation for the Definite Integral: The Concept of Area 139

5.1 Introduction 139

5.2 Preparation for the Definite Integral 140

5.3 The Definite Integral as an Area 143

5.4 Definition of Area in Terms of the Definite Integral 151

5.5 Riemann Sums and the Analytical Definition of the Definite Integral 151

6a The Fundamental Theorems of Calculus 165

6b The Integral Function Ð x 1 1 t dt, (x > 0) Identified as ln x or loge x 183

7a Methods for Evaluating Definite Integrals 197

7b Some Important Properties of Definite Integrals 213

8a Applying the Definite Integral to Compute the Area of a Plane Figure 249

8b To Find Length(s) of Arc(s) of Curve(s), the Volume(s) of Solid(s) of Revolution, and the Area(s) of Surface(s) of Solid(s) of Revolution 295

9a Differential Equations: Related Concepts and Terminology 321

9a.4 Definition: Integral Curve 332

9b Methods of Solving Ordinary Differential Equations of the First Order and of the First Degree 361

INDEX 399

最近チェックした商品