- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
When first published this text by David Johns and Kenneth Martin quickly became a leading textbook for the advanced course on Analog IC Design. This new edition has been thoroughly revised and updated but continues the central themes of the first edition which made it so sucessful.
 This edition features extensive new material on CMOS IC device modeling, processing and layout.  Coverage has been added on several types of circuits that have increased in importance in the past decade, such as generalized integer-N phase locked loops and their phase noise analysis, voltage regulators, and 1.5b-per-stage pipelined A/D converters.  Two new chapters have been added to make the book more accessible to beginners in the field: frequency response of analog ICs; and basic theory of feedback amplifiers. 
Contents
CHAPTER 1 INTEGRATED-CIRCUIT DEVICES AND MODELLING 1
 1.1 Semiconductors and pn Junctions 1
 1.1.1 Diodes 2
 1.1.2 Reverse-Biased Diodes 4
 1.1.3 Graded Junctions 8
 1.1.4 Large-Signal Junction Capacitance 10
 1.1.5 Forward-Biased Junctions 11
 1.1.6 Junction Capacitance of Forward-Biased Diode 12
 1.1.7 Small-Signal Model of a Forward-Biased Diode 13
 1.1.8 Schottky Diodes 14
 1.2 MOS Transistors 15
 1.2.1 Symbols for MOS Transistors 16
 1.2.2 Basic Operation 17
 1.2.3 Large-Signal Modelling 22
 1.2.4 Body Effect 25
 1.2.5 p-Channel Transistors 26
 1.2.6 Low-Frequency Small-Signal Modelling in the Active Region 26
 1.2.7 High-Frequency Small-Signal Modelling in the Active Region 32
 1.2.8 Small-Signal Modelling in the Triode and Cutoff Regions 35
 1.2.9 Analog Figures of Merit and Trade-offs 37
 1.3 Device Model Summary 39
 1.3.1 Constants 40
 1.3.2 Diode Equations 40
 1.3.3 MOS Transistor Equations 41
 1.4 Advanced MOS Modelling 43
 1.4.1 Subthreshold Operation 43
 1.4.2 Mobility Degradation 46
 1.4.3 Summary of Subthreshold and Mobility Degradation Equations 48
 1.4.4 Parasitic Resistances 48
 1.4.5 Short-Channel Effects 49
 1.4.6 Leakage Currents 50
 1.5 SPICE Modelling Parameters 51
 1.5.1 Diode Model 51
 1.5.2 MOS Transistors 52
 1.5.3 Advanced SPICE Models of MOS Transistors 52
 1.6 Passive Devices 55
 1.6.1 Resistors 55
 1.6.2 Capacitors 59
 1.7 Appendix 61
 1.7.1 Diode Exponential Relationship 61
 1.7.2 Diode-Diffusion Capacitance 63
 1.7.3 MOS Threshold Voltage and the Body Effect 65
 1.7.4 MOS Triode Relationship 67
 1.8 Key Points 69
 1.9 References 70
 1.10 Problems 70
 CHAPTER 2 PROCESSING AND LAYOUT 73
 2.1 CMOS Processing 73
 2.1.1 The Silicon Wafer 73
 2.1.2 Photolithography and Well Definition 74
 2.1.3 Diffusion and Ion Implantation 76
 2.1.4 Chemical Vapor Deposition and Defining the Active Regions 78
 2.1.5 Transistor Isolation 78
 2.1.6 Gate-Oxide and Threshold-Voltage Adjustments 81
 2.1.7 Polysilicon Gate Formation 82
 2.1.8 Implanting the Junctions, Depositing SiO2, and Opening Contact Holes 82
 2.1.9 Annealing, Depositing and Patterning Metal, and Overglass Deposition 84
 2.1.10 Additional Processing Steps 84
 2.2 CMOS Layout and Design Rules 86
 2.2.1 Spacing Rules 86
 2.2.2 Planarity and Fill Requirements 94
 2.2.3 Antenna Rules 94
 2.2.4 Latch-Up 95
 2.3 Variability and Mismatch 96
 2.3.1 Systematic Variations Including Proximity Effects 96
 2.3.2 Process Variations 98
 2.3.3 Random Variations and Mismatch 99
 2.4 Analog Layout Considerations 103
 2.4.1 Transistor Layouts 103
 2.4.2 Capacitor Matching 104
 2.4.3 Resistor Layout 107
 2.4.4 Noise Considerations 109
 2.5 Key Points 112
 2.6 References 113
 2.7 Problems 114
 CHAPTER 3 BASIC CURRENT MIRRORS AND SINGLE-STAGE AMPLIFIERS 117
 3.1 Simple CMOS Current Mirror 118
 3.2 Common-Source Amplifier 120
 3.3 Source-Follower or Common-Drain Amplifier 122
 3.4 Common-Gate Amplifier 124
 3.5 Source-Degenerated Current Mirrors 127
 3.6 Cascode Current Mirrors 129
 3.7 Cascode Gain Stage 131
 3.8 MOS Differential Pair and Gain Stage 135
 3.9 Key Points 138
 3.10 References 139
 3.11 Problems 139
 CHAPTER 4 FREQUENCY RESPONSE OF ELECTRONIC CIRCUITS 144
 4.1 Frequency Response of Linear Systems 144
 4.1.1 Magnitude and Phase Response 145
 4.1.2 First-Order Circuits 147
 4.1.3 Second-Order Low-Pass Transfer Functions with Real Poles 154
 4.1.4 Bode Plots 157
 4.1.5 Second-Order Low-Pass Transfer Functions with Complex Poles 163
 4.2 Frequency Response of Elementary Transistor Circuits 164
 4.2.1 High-Frequency MOS Small-Signal Model 164
 4.2.2 Common-Source Amplifier 166
 4.2.3 Miller Theorem and Miller Effect 169
 4.2.4 Zero-Value Time-Constant Analysis 173
 4.2.5 Common-Source Design Examples 176
 4.2.6 Common-Gate Amplifier 179
 4.3 Cascode Gain Stage 181
 4.4 Source-Follower Amplifier 187
 4.5 Differential Pair 193
 4.5.1 High-Frequency T Model 193
 4.5.2 Symmetric Differential Amplifier 194
 4.5.3 Single-Ended Differential Amplifier 195
 4.5.4 Differential Pair with Active Load 196
 4.6 Key Points 197
 4.7 References 198
 4.8 Problems 198
 CHAPTER 5 FEEDBACK AMPLIFIERS 204
 5.1 Ideal Model of Negative Feedback 204
 5.1.1 Basic Definitions 204
 5.1.2 Gain Sensitivity 205
 5.1.3 Bandwidth 206
 5.1.4 Linearity 207
 5.1.5 Summary 207
 5.2 Dynamic Response of Feedback Amplifiers 208
 5.2.1 Stability Criteria 209
 5.2.2 Phase Margin 211
 5.3 First- and Second-Order Feedback Systems 213
 5.3.1 First-Order Feedback Systems 213
 5.3.2 Second-Order Feedback Systems 217
 5.3.3 Higher-Order Feedback Systems 220
 5.4 Common Feedback Amplifiers 221
 5.4.1 Obtaining the Loop Gain, L(s) 222
 5.4.2 Noninverting Amplifier 226
 5.4.3 Transimpedance (Inverting) Amplifiers 231
 5.5 Summary of Key Points 235
 5.6 References 236
 5.7 Problems 236
 CHAPTER 6 BASIC OPAMP DESIGN AND COMPENSATION 242
 6.1 Two-Stage CMOS Opamp 242
 6.1.1 Opamp Gain 243
 6.1.2 Frequency Response 245
 6.1.3 Slew Rate 249
 6.1.4 n-Channel or p-Channel Input Stage 252
 6.1.5 Systematic Offset Voltage 253
 6.2 Opamp Compensation 254
 6.2.1 Dominant-Pole Compensation and Lead Compensation 255
 6.2.2 Compensating the Two-Stage Opamp 256
 6.2.3 Making Compensation Independent of Process and Temperature 260
 6.3 Advanced Current Mirrors 262
 6.3.1 Wide-Swing Current Mirrors 262
 6.3.2 Enhanced Output-Impedance Current Mirrors and Gain Boosting 263
 6.3.3 Wide-Swing Current Mirror with Enhanced Output Impedance 266
 6.3.4 Current-Mirror Symbol 267
 6.4 Folded-Cascode Opamp 268
 6.4.1 Small-Signal Analysis 270
 6.4.2 Slew Rate 272
 6.5 Current Mirror Opamp 275
 6.6 Linear Settling Time Revisited 279
 6.7 Fully Differential Opamps 281
 6.7.1 Fully Differential Folded-Cascode Opamp 283
 6.7.2 Alternative Fully Differential Opamps 284
 6.7.3 Low Supply Voltage Opamps 286
 6.8 Common-Mode Feedback Circuits 288
 6.9 Summary of Key Points 292
 6.10 References 293
 6.11 Problems 294
 CHAPTER 7 BIASING, REFERENCES, AND REGULATORS 302
 7.1 Analog Integrated Circuit Biasing 302
 7.1.1 Bias Circuits 303
 7.1.2 Reference Circuits 305
 7.1.3 Regulator Circuits 306
 7.2 Establishing Constant Transconductance 307
 7.2.1 Basic Constant-Transconductance Circuit 307
 7.2.2 Improved Constant-Transconductance Circuits 309
 7.3 Establishing Constant Voltages and Currents 310
 7.3.1 Bandgap Voltage Reference Basics 310
 7.3.2 Circuits for Bandgap References 314
 7.3.3 Low-Voltage Bandgap Reference 319
 7.3.4 Current Reference 320
 7.4 Voltage Regulation 321
 7.4.1 Regulator Specifications 321
 7.4.2 Feedback Analysis 322
 7.4.3 Low Dropout Regulators 324
 7.5 Summary of Key Points 327
 7.6 References 327
 7.7 Problems 328
 CHAPTER 8 BIPOLAR DEVICES AND CIRCUITS 331
 8.1 Bipolar-Junction Transistors 331
 8.1.1 Basic Operation 331
 8.1.2 Analog Figures of Merit 341
 8.2 Bipolar Device Model Summary 344
 8.3 SPICE Modeling 345
 8.4 Bipolar and BICMOS Processing 346
 8.4.1 Bipolar Processing 346
 8.4.2 Modern SiGe BiCMOS HBT Processing 347
 8.4.3 Mismatch in Bipolar Devices 348
 8.5 Bipolar Current Mirrors and Gain Stages 349
 8.5.1 Current Mirrors 349
 8.5.2 Emitter Follower 350
 8.5.3 Bipolar Differential Pair 353
 8.6 Appendix 356
 8.6.1 Bipolar Transistor Exponential Relationship 356
 8.6.2 Base Charge Storage of an Active BJT 359
 8.7 Summary of Key Points 359
 8.8 References 360
 8.9 Problems 360
 CHAPTER 9 NOISE AND LINEARITY ANALYSIS AND MODELLING 363
 9.1 Time-Domain Analysis 363
 9.1.1 Root Mean Square (rms) Value 364
 9.1.2 SNR 365
 9.1.3 Units of dBm 365
 9.1.4 Noise Summation 366
 9.2 Frequency-Domain Analysis 367
 9.2.1 Noise Spectral Density 367
 9.2.2 White Noise 369
 9.2.3 1/f, or Flicker, Noise 370
 9.2.4 Filtered Noise 371
 9.2.5 Noise Bandwidth 373
 9.2.6 Piecewise Integration of Noise 375
 9.2.7 1/f Noise Tangent Principle 377
 9.3 Noise Models for Circuit Elements 377
 9.3.1 Resistors 378
 9.3.2 Diodes 378
 9.3.3 Bipolar Transistors 380
 9.3.4 MOSFETS 380
 9.3.5 Opamps 382
 9.3.6 Capacitors and Inductors 382
 9.3.7 Sampled Signal Noise 384
 9.3.8 Input-Referred Noise 384
 9.4 Noise Analysis Examples 387
 9.4.1 Opamp Example 387
 9.4.2 Bipolar Common-Emitter Example 390
 9.4.3 CMOS Differential Pair Example 392
 9.4.4 Fiber-Optic Transimpedance Amplifier Example 395
 9.5 Dynamic Range Performance 397
 9.5.1 Total Harmonic Distortion (THD) 398
 9.5.2 Third-Order Intercept Point (IP3) 400
 9.5.3 Spurious-Free Dynamic Range (SFDR) 402
 9.5.4 Signal-to-Noise and Distortion Ratio (SNDR) 404
 9.6 Key Points 405
 9.7 References 406
 9.8 Problems 406
 CHAPTER 10 COMPARATORS 413
 10.1 Comparator Specifications 413
 10.1.1 Input Offset and Noise 413
 10.1.2 Hysteresis 414
 10.2 Using an Opamp for a Comparator 415
 10.2.1 Input-Offset Voltage Errors 417
 10.3 Charge-Injection Errors 418
 10.3.1 Making Charge-Injection Signal Independent 421
 10.3.2 Minimizing Errors Due to Charge-Injection 421
 10.3.3 Speed of Multi-Stage Comparators 424
 10.4 Latched Comparators 426
 10.4.1 Latch-Mode Time Constant 428
 10.4.2 Latch Offset 430
 10.5 Examples of CMOS and BiCMOS Comparators 432
 10.5.1 Input-Transistor Charge Trapping 435
 10.6 Examples of Bipolar Comparators 437
 10.7 Key Points 439
 10.8 References 440
 10.9 Problems 441
 CHAPTER 11 SAMPLE-AND-HOLD AND TRANSLINEAR CIRCUITS 444
 11.1 Performance of Sample-and-Hold Circuits 444
 11.1.1 Testing Sample-and-Holds 445
 11.2 MOS Sample-and-Hold Basics 446
 11.3 Examples of CMOS S/H Circuits 452
 11.4 Bipolar and BiCMOS Sample-and-Holds 456
 11.5 Translinear Gain Cell 460
 11.6 Translinear Multiplier 462
 11.7 Key Points 464
 11.8 References 465
 11.9 Problems 466
 CHAPTER 12 CONTINUOUS-TIME FILTERS 469
 12.1 Introduction to Continuous-Time Filters 469
 12.1.1 First-Order Filters 470
 12.1.2 Second-Order Filters 470
 12.2 Introduction to Gm-C Filters 471
 12.2.1 Integrators and Summers 472
 12.2.2 Fully Differential Integrators 473
 12.2.3 First-Order Filter 475
 12.2.4 Biquad Filter 477
 12.3 Transconductors Using Fixed Resistors 478
 12.4 CMOS Transconductors Using Triode Transistors 483
 12.4.1 Transconductors Using a Fixed-Bias Triode Transistor 484
 12.4.2 Transconductors Using Varying Bias-Triode Transistors 486
 12.4.3 Transconductors Using Constant Drain-Source Voltages 490
 12.5 CMOS Transconductors Using Active Transistors 492
 12.5.1 CMOS Pair 493
 12.5.2 Constant Sum of Gate-Source Voltages 494
 12.5.3 Source-Connected Differential Pair 495
 12.5.4 Inverter-Based 495
 12.5.5 Differential-Pair with Floating Voltage Sources 496
 12.5.6 Bias-Offset Cross-Coupled Differential Pairs 499
 12.6 Bipolar Transconductors 499
 12.6.1 Gain-Cell Transconductors 500
 12.6.2 Transconductors Using Multiple Differential Pairs 502
 12.7 BiCMOS Transconductors 506
 12.7.1 Tunable MOS in Triode 506
 12.7.2 Fixed-Resistor Transconductor with a Translinear Multiplier 507
 12.7.3 Fixed Active MOS Transconductor with a Translinear Multiplier 508
 12.8 Active RC and MOSFET-C Filters 509
 12.8.1 Active RC Filters 510
 12.8.2 MOSFET-C Two-Transistor Integrators 512
 12.8.3 Four-Transistor Integrators 515
 12.8.4 R-MOSFET-C Filters 516
 12.9 Tuning Circuitry 517
 12.9.1 Tuning Overview 517
 12.9.2 Constant Transconductance 519
 12.9.3 Frequency Tuning 520
 12.9.4 Q-Factor Tuning 522
 12.9.5 Tuning Methods Based on Adaptive Filtering 523
 12.10 Introduction to Complex Filters 525
 12.10.1 Complex Signal Processing 525
 12.10.2 Complex Operations 526
 12.10.3 Complex Filters 527
 12.10.4 Frequency-Translated Analog Filters 528
 12.11 Key Points 531
 12.12 References 532
 12.13 Problems 534
 CHAPTER 13 DISCRETE-TIME SIGNALS 537
 13.1 Overview of Some Signal Spectra 537
 13.2 Laplace Transforms of Discrete-Time Signals 537
 13.2.1 Spectra of Discrete-Time Signals 540
 13.3 z-Transform 541
 13.4 Downsampling and Upsampling 543
 13.5 Discrete-Time Filters 545
 13.5.1 Frequency Response of Discrete-Time Filters 545
 13.5.2 Stability of Discrete-Time Filters 548
 13.5.3 IIR and FIR Filters 550
 13.5.4 Bilinear Transform 550
 13.6 Sample-and-Hold Response 552
 13.7 Key Points 554
 13.8 References 555
 13.9 Problems 555
 CHAPTER 14 SWITCHED-CAPACITOR CIRCUITS 557
 14.1 Basic Building Blocks 557
 14.1.1 Opamps 557
 14.1.2 Capacitors 558
 14.1.3 Switches 558
 14.1.4 Nonoverlapping Clocks 559
 14.2 Basic Operation and Analysis 560
 14.2.1 Resistor Equivalence of a Switched Capacitor 560
 14.2.2 Parasitic-Sensitive Integrator 563
 14.2.3 Parasitic-Insensitive Integrators 565
 14.2.4 Signal-Flow-Graph Analysis 569
 14.3 Noise in Switched-Capacitor Circuits 570
 14.4 First-Order Filters 572
 14.4.1 Switch Sharing 575
 14.4.2 Fully Differential Filters 575
 14.5 Biquad Filters 577
 14.5.1 Low-Q Biquad Filter 577
 14.5.2 High-Q Biquad Filter 581
 14.6 Charge Injection 585
 14.7 Switched-Capacitor Gain Circuits 588
 14.7.1 Parallel Resistor-Capacitor Circuit 588
 14.7.2 Resettable Gain Circuit 588
 14.7.3 Capacitive-Reset Gain Circuit 591
 14.8 Correlated Double-Sampling Techniques 593
 14.9 Other Switched-Capacitor Circuits 594
 14.9.1 Amplitude Modulator 594
 14.9.2 Full-Wave Rectifier 595
 14.9.3 Peak Detectors 596
 14.9.4 Voltage-Controlled Oscillator 596
 14.9.5 Sinusoidal Oscillator 598
 14.10 Key Points 600
 14.11 References 601
 14.12 Problems 602
 CHAPTER 15 DATA CONVERTER FUNDAMENTALS 606
 15.1 Ideal D/A Converter 606
 15.2 Ideal A/D Converter 608
 15.3 Quantization Noise 609
 15.3.1 Deterministic Approach 609
 15.3.2 Stochastic Approach 610
 15.4 Signed Codes 612
 15.5 Performance Limitations 614
 15.5.1 Resolution 614
 15.5.2 Offset and Gain Error 615
 15.5.3 Accuracy and Linearity 615
 15.6 Key Points 620
 15.7 References 620
 15.8 Problems 620
 CHAPTER 16 NYQUIST-RATE D/A CONVERTERS 623
 16.1 Decoder-Based Converters 623
 16.1.1 Resistor-String Converters 623
 16.1.2 Folded Resistor-String Converters 625
 16.1.3 Multiple Resistor-String Converters 626
 16.1.4 Signed Outputs 628
 16.2 Binary-Scaled Converters 629
 16.2.1 Binary-Weighted Resistor Converters 629
 16.2.2 Reduced-Resistance-Ratio Ladders 630
 16.2.3 R-2R-Based Converters 631
 16.2.4 Charge-Redistribution Switched-Capacitor Converters 632
 16.2.5 Current-Mode Converters 633
 16.2.6 Glitches 633
 16.3 Thermometer-Code Converters 634
 16.3.1 Thermometer-Code Current-Mode D/A Converters 636
 16.3.2 Single-Supply Positive-Output Converters 637
 16.3.3 Dynamically Matched Current Sources 638
 16.4 Hybrid Converters 640
 16.4.1 Resistor-Capacitor Hybrid Converters 640
 16.4.2 Segmented Converters 640
 16.5 Key Points 642
 16.6 References 643
 16.7 Problems 643
 CHAPTER 17 NYQUIST-RATE A/D CONVERTERS 646
 17.1 Integrating Converters 646
 17.2 Successive-Approximation Converters 650
 17.2.1 D/A-Based Successive Approximation 652
 17.2.2 Charge-Redistribution A/D 653
 17.2.3 Resistor-Capacitor Hybrid 658
 17.2.4 Speed Estimate for Charge-Redistribution Converters 659
 17.2.5 Error Correction in Successive-Approximation Converters 660
 17.2.6 Multi-Bit Successive-Approximation 662
 17.3 Algorithmic (or Cyclic) A/D Converter 662
 17.3.1 Ratio-Independent Algorithmic Converter 663
 17.4 Pipelined A/D Converters 667
 17.4.1 One-Bit-Per-Stage Pipelined Converter 667
 17.4.2 1.5 Bit Per Stage Pipelined Converter 670
 17.4.3 Pipelined Converter Circuits 673
 17.4.4 Generalized k-Bit-Per-Stage Pipelined Converters 673
 17.5 Flash Converters 674
 17.5.1 Issues in Designing Flash A/D Converters 675
 17.6 Two-Step A/D Converters 678
 17.6.1 Two-Step Converter with Digital Error Correction 679
 17.7 Interpolating A/D Converters 681
 17.8 Folding A/D Converters 684
 17.9 Time-Interleaved A/D Converters 687
 17.10 Key Points 690
 17.11 References 691
 17.12 Problems 692
 CHAPTER 18 OVERSAMPLING CONVERTERS 696
 18.1 Oversampling without Noise Shaping 696
 18.1.1 Quantization Noise Modelling 697
 18.1.2 White Noise Assumption 697
 18.1.3 Oversampling Advantage 698
 18.1.4 The Advantage of 1-Bit D/A Converters 700
 18.2 Oversampling with Noise Shaping 701
 18.2.1 Noise-Shaped Delta-Sigma Modulator 702
 18.2.2 First-Order Noise Shaping 703
 18.2.3 Switched-Capacitor Realization of a First-Order A/D Converter 705
 18.2.4 Second-Order Noise Shaping 705
 18.2.5 Noise Transfer-Function Curves 707
 18.2.6 Quantization Noise Power of 1-Bit Modulators 708
 18.2.7 Error-Feedback Structure 708
 18.3 System Architectures 710
 18.3.1 System Architecture of Delta-Sigma A/D Converters 710
 18.3.2 System Architecture of Delta-Sigma D/A Converters 712
 18.4 Digital Decimation Filters 713
 18.4.1 Multi-Stage 714
 18.4.2 Single Stage 716
 18.5 Higher-Order Modulators 717
 18.5.1 Interpolative Architecture 717
 18.5.2 Multi-Stage Noise Shaping (MASH) Architecture 718
 18.6 Bandpass Oversampling Converters 720
 18.7 Practical Considerations 721
 18.7.1 Stability 721
 18.7.2 Linearity of Two-Level Converters 722
 18.7.3 Idle Tones 724
 18.7.4 Dithering 725
 18.7.5 Opamp Gain 725
 18.8 Multi-Bit Oversampling Converters 726
 18.8.1 Dynamic Element Matching 726
 18.8.2 Dynamically Matched Current Source D/A Converters 727
 18.8.3 Digital Calibration A/D Converter 727
 18.8.4 A/D with Both Multi-Bit and Single-Bit Feedback 728
 18.9 Third-Order A/D Design Example 729
 18.10 Key Points 731
 18.11 References 733
 18.12 Problems 734
 CHAPTER 19 PHASE-LOCKED LOOPS 737
 19.1 Basic Phase-Locked Loop Architecture 737
 19.1.1 Voltage-Controlled Oscillator 738
 19.1.2 Divider 739
 19.1.3 Phase Detector 740
 19.1.4 Loop Filer 745
 19.1.5 The PLL in Lock 746
 19.2 Linearized Small-Signal Analysis 747
 19.2.1 Second-Order PLL Model 748
 19.2.2 Limitations of the Second-Order Small-Signal Model 750
 19.2.3 PLL Design Example 752
 19.3 Jitter and Phase Noise 754
 19.3.1 Period Jitter 758
 19.3.2 P-Cycle Jitter 758
 19.3.3 Adjacent Period Jitter 759
 19.3.4 Other Spectral Representations of Jitter 760
 19.3.5 Probability Density Function of Jitter 761
 19.4 Electronic Oscillators 763
 19.4.1 Ring Oscillators 764
 19.4.2 LC Oscillators 768
 19.4.3 Phase Noise of Oscillators 770
 19.5 Jitter and Phase Noise in PLLS 774
 19.5.1 Input Phase Noise and Divider Phase Noise 775
 19.5.2 VCO Phase Noise 775
 19.5.3 Loop Filter Noise 776
 19.6 Key Points 779
 19.7 References 779
 19.8 Problems 780
 INDEX 783


 
               
               
               
              


