Mathematics and Its Logics : Philosophical Essays

個数:

Mathematics and Its Logics : Philosophical Essays

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 言語 ENG
  • 商品コード 9781108714006
  • DDC分類 510.1

Full Description

In these essays Geoffrey Hellman presents a strong case for a healthy pluralism in mathematics and its logics, supporting peaceful coexistence despite what appear to be contradictions between different systems, and positing different frameworks serving different legitimate purposes. The essays refine and extend Hellman's modal-structuralist account of mathematics, developing a height-potentialist view of higher set theory which recognizes indefinite extendability of models and stages at which sets occur. In the first of three new essays written for this volume, Hellman shows how extendability can be deployed to derive the axiom of Infinity and that of Replacement, improving on earlier accounts; he also shows how extendability leads to attractive, novel resolutions of the set-theoretic paradoxes. Other essays explore advantages and limitations of restrictive systems - nominalist, predicativist, and constructivist. Also included are two essays, with Solomon Feferman, on predicative foundations of arithmetic.

Contents

Introduction; Part I. Structuralism, Extendability, and Nominalism: 1. Structuralism without Structures?; 2. What Is Categorical Structuralism?; 3. On the Significance of the Burali-Forti Paradox; 4. Extending the Iterative Conception of Set: A Height-Potentialist Perspective; 5. On Nominalism; 6. Maoist Mathematics? Critical Study of John Burgess and Gideon Rosen, A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics (Oxford, 1997); Part II. Predicative Mathematics and Beyond: 7. Predicative Foundations of Arithmetic (with Solomon Feferman); 8. Challenges to Predicative Foundations of Arithmetic (with Solomon Feferman); 9. Predicativism as a Philosophical Position; 10. On the Gödel-Friedman Program; Part III. Logics of Mathematics: 11. Logical Truth by Linguistic Convention; 12. Never Say 'Never'! On the Communication Problem between Intuitionism and Classicism; 13. Constructive Mathematics and Quantum Mechanics: Unbounded Operators and the Spectral Theorem; 14. If 'If-Then' Then What?; 15. Mathematical Pluralism: The Case of Smooth Infinitesimal Analysis.

最近チェックした商品