- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille-Yosida and Lumer-Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller-Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann-Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
Contents
Introduction; 1. Semigroups and generators; 2. The generation of semigroups; 3. Convolution semigroups of measures; 4. Self adjoint semigroups and unitary groups; 5. Compact and trace class semigroups; 6. Perturbation theory; 7. Markov and Feller semigroups; 8. Semigroups and dynamics; 9. Varopoulos semigroups; Notes and further reading; Appendices: A. The space C0(Rd); B. The Fourier transform; C. Sobolev spaces; D. Probability measures and Kolmogorov's theorem on construction of stochastic processes; E. Absolute continuity, conditional expectation and martingales; F. Stochastic integration and Itô's formula; G. Measures on locally compact spaces: some brief remarks; References; Index.



