多項式および半代数的最適化入門<br>An Introduction to Polynomial and Semi-Algebraic Optimization (Cambridge Texts in Applied Mathematics)

個数:

多項式および半代数的最適化入門
An Introduction to Polynomial and Semi-Algebraic Optimization (Cambridge Texts in Applied Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 354 p.
  • 言語 ENG
  • 商品コード 9781107630697
  • DDC分類 519.6

Full Description

This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems) described by polynomials (and even semi-algebraic functions). In particular, the author explains how to use relatively recent results from real algebraic geometry to provide a systematic numerical scheme for computing the optimal value and global minimizers. Indeed, among other things, powerful positivity certificates from real algebraic geometry allow one to define an appropriate hierarchy of semidefinite (SOS) relaxations or LP relaxations whose optimal values converge to the global minimum. Several extensions to related optimization problems are also described. Graduate students, engineers and researchers entering the field can use this book to understand, experiment with and master this new approach through the simple worked examples provided.

Contents

Preface; List of symbols; 1. Introduction and messages of the book; Part I. Positive Polynomials and Moment Problems: 2. Positive polynomials and moment problems; 3. Another look at nonnegativity; 4. The cone of polynomials nonnegative on K; Part II. Polynomial and Semi-algebraic Optimization: 5. The primal and dual points of view; 6. Semidefinite relaxations for polynomial optimization; 7. Global optimality certificates; 8. Exploiting sparsity or symmetry; 9. LP relaxations for polynomial optimization; 10. Minimization of rational functions; 11. Semidefinite relaxations for semi-algebraic optimization; 12. An eigenvalue problem; Part III. Specializations and Extensions: 13. Convexity in polynomial optimization; 14. Parametric optimization; 15. Convex underestimators of polynomials; 16. Inverse polynomial optimization; 17. Approximation of sets defined with quantifiers; 18. Level sets and a generalization of the Löwner-John's problem; Appendix A. Semidefinite programming; Appendix B. The GloptiPoly software; References; Index.

最近チェックした商品