素数とリーマン予想<br>Prime Numbers and the Riemann Hypothesis

個数:

素数とリーマン予想
Prime Numbers and the Riemann Hypothesis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 150 p.
  • 言語 ENG
  • 商品コード 9781107499430
  • DDC分類 512.73

Full Description

Prime numbers are beautiful, mysterious, and beguiling mathematical objects. The mathematician Bernhard Riemann made a celebrated conjecture about primes in 1859, the so-called Riemann hypothesis, which remains one of the most important unsolved problems in mathematics. Through the deep insights of the authors, this book introduces primes and explains the Riemann hypothesis. Students with a minimal mathematical background and scholars alike will enjoy this comprehensive discussion of primes. The first part of the book will inspire the curiosity of a general reader with an accessible explanation of the key ideas. The exposition of these ideas is generously illuminated by computational graphics that exhibit the key concepts and phenomena in enticing detail. Readers with more mathematical experience will then go deeper into the structure of primes and see how the Riemann hypothesis relates to Fourier analysis using the vocabulary of spectra. Readers with a strong mathematical background will be able to connect these ideas to historical formulations of the Riemann hypothesis.

Contents

1. Thoughts about numbers; 2. What are prime numbers?; 3. 'Named' prime numbers; 4. Sieves; 5. Questions about primes; 6. Further questions about primes; 7. How many primes are there?; 8. Prime numbers viewed from a distance; 9. Pure and applied mathematics; 10. A probabilistic 'first' guess; 11. What is a 'good approximation'?; 12. Square root error and random walks; 13. What is Riemann's hypothesis?; 14. The mystery moves to the error term; 15. Césaro smoothing; 16. A view of Li(X) - π(X); 17. The prime number theorem; 18. The staircase of primes; 19. Tinkering with the staircase of primes; 20. Computer music files and prime numbers; 21. The word 'spectrum'; 22. Spectra and trigonometric sums; 23. The spectrum and the staircase of primes; 24. To our readers of part I; 25. Slopes and graphs that have no slopes; 26. Distributions; 27. Fourier transforms: second visit; 28. Fourier transform of delta; 29. Trigonometric series; 30. A sneak preview; 31. On losing no information; 32. Going from the primes to the Riemann spectrum; 33. How many θi's are there?; 34. Further questions about the Riemann spectrum; 35. Going from the Riemann spectrum to the primes; 36. Building π(X) knowing the spectrum; 37. As Riemann envisioned it; 38. Companions to the zeta function.

最近チェックした商品