X線と紫外線放射:原理と応用(テキスト・第2版)<br>X-Rays and Extreme Ultraviolet Radiation : Principles and Applications (2ND)

個数:
電子版価格 ¥7,843
  • 電書あり
  • ポイントキャンペーン

X線と紫外線放射:原理と応用(テキスト・第2版)
X-Rays and Extreme Ultraviolet Radiation : Principles and Applications (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 634 p.
  • 言語 ENG
  • 商品コード 9781107062894
  • DDC分類 539.7222

Full Description


With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.

Table of Contents

Preface to the Second Edition                      xiii
Acknowledgments for the Second Edition xiv
Preface to the First Edition xv
Acknowledgments for the First Edition xviii
1 Introduction 1 (26)
1.1 The X-Ray and Extreme Ultraviolet 1 (4)
Regions of the Electromagnetic Spectrum
1.2 Basic Absorption and Emission 5 (6)
Processes
1.3 Atomic Energy Levels and Allowed 11 (9)
Transitions
1.4 Scattering, Diffraction, and 20 (7)
Refraction of Electromagnetic Radiation
References 24 (2)
Homework Problems 26 (1)
2 Radiation and Scattering at EUV and X-Ray 27 (33)
Wavelengths
2.1 Maxwell's Equations and the Wave 27 (3)
Equation
2.2 Calculating Scattered Fields 30 (7)
2.3 Radiated Power and Poynting's Theorem 37 (4)
2.4 Scattering Cross-Sections 41 (1)
2.5 Scattering by a Free Electron 42 (3)
2.6 Scattering by Bound Electrons 45 (3)
2.7 Scattering by a Multi-Electron Atom 48 (12)
References 58 (1)
Homework Problems 59 (1)
3 Wave Propagation and Refractive Index at 60 (50)
X-Ray and EUV Wavelengths
3.1 The Wave Equation and Refractive Index 61 (5)
3.2 Phase Variation and Absorption of 66 (5)
Propagating Waves
3.3 Reflection and Refraction at an 71 (3)
Interface
3.4 Total External Reflection of X-Rays 74 (3)
and EUV Radiation
3.5 Reflection Coefficients at an 77 (9)
Interface
3.6 Brewster's Angle 86 (2)
3.7 Field Penetration into a Lossy Medium 88 (9)
Near the Critical Angle
3.8 Determination of δ and β: 97 (4)
The Kramers--Kronig Relations
3.9 Enhanced Reflectivity from Periodic 101 (9)
Structures
References 107 (2)
Homework Problems 109 (1)
4 Coherence at Short Wavelengths 110 (38)
4.1 Concepts of Spatial and Temporal 111 (8)
Coherence
4.2 Spatial and Spectral Filtering 119 (2)
4.3 Examples of Experiments that Require 121 (5)
Coherence
4.4 The van Cittert--Zernike Theorem 126 (9)
4.5 Young's Double Slit Interference 135 (2)
Technique
4.6 Spatial and Temporal Coherence, and 137 (2)
True Phase Coherence
4.7 Diffraction of Radiation by a 139 (5)
Coherently Illuminated Pinhole Aperture
4.8 Similarities between the Diffraction 144 (4)
of Partially Coherent and Coherent
Radiation by a Circular Aperture
References 145 (2)
Homework Problems 147 (1)
5 Synchrotron Radiation 148 (79)
5.1 Introduction 149 (4)
5.2 Characteristics of Bending Magnet 153 (8)
Radiation
5.3 Characteristics of Undulator Radiation 161 (6)
5.4 Undulator Radiation: Calculations of 167 (33)
Radiated Power, Brightness, and Harmonics
5.5 The Scale of Harmonic Motion 200 (5)
5.6 Spatial and Spectral Filtering of 205 (10)
Undulator Radiation
5.7 The Transition from Undulator to 215 (5)
Wiggler Radiation
5.8 Wiggler Power and Flux 220 (7)
References 223 (3)
Homework Problems 226 (1)
6 X-Ray and EUV Free Electron Lasers 227 (52)
6.1 The Free Electron Laser 228 (3)
6.2 Evolution from Undulator Radiation to 231 (6)
Free Electron Lasing
6.3 The FEL Equations and Characteristic 237 (10)
Parameters
6.4 First FEL Lasing Experiments at EUV 247 (4)
and X-Ray Wavelengths
6.5 Spatial and Temporal Coherence of 251 (5)
X-Ray FEL Radiation
6.6 Seeded and Self-Seeded FELs 256 (5)
6.7 Pump-Probe Capabilities 261 (4)
6.8 Current FEL Facilities, Parameters, 265 (1)
and Capabilities
6.9 Scientific Applications of Coherent, 266 (13)
Intense, and Short Duration (fs/as) EUV
and X-Ray FEL Radiation
References 270 (8)
Homework Problems 278 (1)
7 Laser High Harmonic Generation 279 (36)
7.1 The Basic Process of High Harmonic 279 (2)
Generation (HHG)
7.2 Electron Tunneling, Trajectories, 281 (12)
Return Energies, and the Efficiency of
High Harmonic Generation
7.3 Spatial and Temporal Coherence of 293 (2)
High Harmonic Radiation
7.4 IR/EUV Dephasing and the Effective 295 (5)
Propagation Path Length for HHG
7.5 Attosecond Duration EUV/Soft X-Ray 300 (6)
Pulses
7.6 Attosecond Probing of Dynamical 306 (9)
Processes in Atoms, Molecules,
Nanoparticles, and Solids
References 310 (4)
Homework Problems 314 (1)
8 Physics of Hot Dense Plasmas 315 (88)
8.1 Introduction 316 (2)
8.2 Short and Long Range Interactions in 318 (3)
Plasmas
8.3 Basic Parameters for Describing a 321 (3)
Plasma
8.4 Microscopic, Kinetic, and Fluid 324 (38)
Descriptions of a Plasma
8.5 Numerical Simulations 362 (5)
8.6 Density Gradients: UV and EUV Probing 367 (4)
of Plasmas
8.7 X-Ray Emission from a Hot Dense Plasma 371 (19)
8.8 An Application: EUV Emitting Plasma 390 (13)
for Computer Chip Lithography
References 395 (7)
Homework Problems 402 (1)
9 Extreme Ultraviolet and Soft X-Ray Lasers 403 (43)
9.1 Basic Processes 404 (7)
9.2 Gain 411 (5)
9.3 Recombination Lasing with 416 (5)
Hydrogen-Like Carbon Ions
9.4 Collisionally Pumped Neon-Like and 421 (10)
Nickel-Like Lasers
9.5 Compact EUV Lasers 431 (5)
9.6 Spatially Coherent EUV and Soft X-Ray 436 (10)
Lasers
References 440 (5)
Homework Problems 445 (1)
10 X-Ray and Extreme Ultraviolet Optics 446 (68)
10.1 Introduction 446 (2)
10.2 Reflective X-Ray Optics 448 (7)
10.3 Multilayer Mirrors 455 (9)
10.4 Capillary Optics 464 (3)
10.5 Transmission Gratings 467 (2)
10.6 The Fresnel Zone Plate Lens 469 (29)
10.7 Reflection Gratings 498 (1)
10.8 Crystal Optics 499 (2)
10.9 Compound Refractive Lenses 501 (13)
References 505 (8)
Homework Problems 513 (1)
11 X-Ray and EUV Imaging 514 (53)
11.1 Introduction 514 (4)
11.2 Spatial Resolution and Contrast 518 (6)
11.3 Projection Imaging 524 (13)
11.4 Scanning X-Ray Microscopy 537 (4)
11.5 Full-Field X-Ray Microscopy 541 (7)
11.6 Diffractive Imaging Techniques 548 (9)
11.7 Optical System for EUV Lithography 557 (10)
References 559 (7)
Homework Problems 566 (1)
Appendix A Units and Physical Constants 567 (3)
A.1 The International System of Units (SI) 567 (2)
A.2 Physical Constants 569 (1)
Appendix B Electron Binding Energies, 570 (8)
Principal K- and L-Shell Emission Lines, and
Auger Electron Energies
Appendix C Atomic Scattering Factors, Atomic 578 (14)
Absorption Coefficients, and Subshell
Photoionization Cross-Sections
Appendix D Mathematical and Vector 592 (10)
Relationships
D.1 Vector and Tensor Formulas 592 (1)
D.2 Series Expansions 593 (1)
D.3 Trigonometric Relationships 594 (1)
D.4 Definite Integrals 595 (1)
D.5 Functions of a Complex Variable 596 (3)
D.6 Fourier Transforms and Fourier 599 (1)
Transform Pairs
D.7 The Dirac Delta Function 600 (1)
D.8 The Cauchy Principal Value Theorem 600 (2)
Appendix E Some Integrations in k, 602 (5)
ω-Space
Appendix F Lorentz Space-Time Transformations 607 (10)
F.1 Frequency and Wavenumber Relations 608 (3)
F.2 Angular Transformations 611 (1)
F.3 The Lorentz Contraction of Length 612 (1)
F.4 Time Dilation 613 (1)
F.5 Transforming dP' /dΩ' to 614 (3)
dP/dΩ
Appendix G Some FEL Algebra 617 (3)
G.1 Slow and Fast Phase for Energy 617 (1)
Transfer, θs and θf
G.2 The One-Dimensional Wave Equation 618 (2)
Appendix H Ionization Rates of Noble Gas 620 (2)
Atoms as a Function of Laser Intensity and
Pulse Duration at 800 nm Wavelength
Index 622