カーネル化入門<br>Kernelization : Theory of Parameterized Preprocessing

個数:
電子版価格
¥8,932
  • 電子版あり

カーネル化入門
Kernelization : Theory of Parameterized Preprocessing

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9781107057760
  • DDC分類 005.72

Full Description

Preprocessing, or data reduction, is a standard technique for simplifying and speeding up computation. Written by a team of experts in the field, this book introduces a rapidly developing area of preprocessing analysis known as kernelization. The authors provide an overview of basic methods and important results, with accessible explanations of the most recent advances in the area, such as meta-kernelization, representative sets, polynomial lower bounds, and lossy kernelization. The text is divided into four parts, which cover the different theoretical aspects of the area: upper bounds, meta-theorems, lower bounds, and beyond kernelization. The methods are demonstrated through extensive examples using a single data set. Written to be self-contained, the book only requires a basic background in algorithmics and will be of use to professionals, researchers and graduate students in theoretical computer science, optimization, combinatorics, and related fields.

Contents

1. What is a kernel?; Part I. Upper Bounds: 2. Warm up; 3. Inductive priorities; 4. Crown decomposition; 5. Expansion lemma; 6. Linear programming; 7. Hypertrees; 8. Sunflower lemma; 9. Modules; 10. Matroids; 11. Representative families; 12. Greedy packing; 13. Euler's formula; Part II. Meta Theorems: 14. Introduction to treewidth; 15. Bidimensionality and protrusions; 16. Surgery on graphs; Part III. Lower Bounds: 17. Framework; 18. Instance selectors; 19. Polynomial parameter transformation; 20. Polynomial lower bounds; 21. Extending distillation; Part IV. Beyond Kernelization: 22. Turing kernelization; 23. Lossy kernelization.

最近チェックした商品