Descriptive Complexity, Canonisation, and Definable Graph Structure Theory (Lecture Notes in Logic)

個数:

Descriptive Complexity, Canonisation, and Definable Graph Structure Theory (Lecture Notes in Logic)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 554 p.
  • 言語 ENG
  • 商品コード 9781107014527
  • DDC分類 511.5

Full Description

Descriptive complexity theory establishes a connection between the computational complexity of algorithmic problems (the computational resources required to solve the problems) and their descriptive complexity (the language resources required to describe the problems). This groundbreaking book approaches descriptive complexity from the angle of modern structural graph theory, specifically graph minor theory. It develops a 'definable structure theory' concerned with the logical definability of graph theoretic concepts such as tree decompositions and embeddings. The first part starts with an introduction to the background, from logic, complexity, and graph theory, and develops the theory up to first applications in descriptive complexity theory and graph isomorphism testing. It may serve as the basis for a graduate-level course. The second part is more advanced and mainly devoted to the proof of a single, previously unpublished theorem: properties of graphs with excluded minors are decidable in polynomial time if, and only if, they are definable in fixed-point logic with counting.

Contents

1. Introduction; Part I. The Basic Theory: 2. Background from graph theory and logic; 3. Descriptive complexity; 4. Treelike decompositions; 5. Definable decompositions; 6. Graphs of bounded tree width; 7. Ordered treelike decompositions; 8. 3-Connected components; 9. Graphs embeddable in a surface; Part II. Definable Decompositions of Graphs with Excluded Minors: 10. Quasi-4-connected components; 11. K5-minor free graphs; 12. Completions of pre-decompositions; 13. Almost planar graphs; 14. Almost planar completions; 15. Almost embeddable graphs; 16. Decompositions of almost embeddable graphs; 17. Graphs with excluded minors; 18. Bits and pieces; Appendix. Robertson and Seymour's version of the local structure theorem; References; Symbol index; Index.

最近チェックした商品