Proof Analysis : A Contribution to Hilbert's Last Problem

個数:

Proof Analysis : A Contribution to Hilbert's Last Problem

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 278 p.
  • 言語 ENG
  • 商品コード 9781107008953
  • DDC分類 511.36

Full Description

This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.

Contents

Prologue: Hilbert's Last Problem; 1. Introduction; Part I. Proof Systems Based on Natural Deduction: 2. Rules of proof: natural deduction; 3. Axiomatic systems; 4. Order and lattice theory; 5. Theories with existence axioms; Part II. Proof Systems Based on Sequent Calculus: 6. Rules of proof: sequent calculus; 7. Linear order; Part III. Proof Systems for Geometric Theories: 8. Geometric theories; 9. Classical and intuitionistic axiomatics; 10. Proof analysis in elementary geometry; Part IV. Proof Systems for Nonclassical Logics: 11. Modal logic; 12. Quantified modal logic, provability logic, and so on; Bibliography; Index of names; Index of subjects.

最近チェックした商品