Artificial Intelligence (AI) in Cell and Genetic Engineering (Methods in Molecular Biology)

個数:
  • 予約

Artificial Intelligence (AI) in Cell and Genetic Engineering (Methods in Molecular Biology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 516 p.
  • 言語 ENG
  • 商品コード 9781071646892

Full Description

This volume focuses on how different artificial intelligence (AI) techniques like Artificial Neural Network, Support Vector Machine, Random Forest, k-means Clustering, Rough Set Theory, and Convolutional Neural Network models are used in areas of cell and genetic engineering. The chapters this book cover a variety of topics such as molecular modelling in drug discovery, design of precision medicine, protein structure prediction, and analysis using AI. Readers can also learn about AI-based biomolecular spectroscopy, cell culture-system, AI-based drug discovery, and next generation sequencing. The book also discusses the application of AI in analysis of genetic diseases such as finding genetic insights of oral and maxillofacial cancer, early screening and diagnosis of autism, and classification of breast cancer microarray data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Cutting-edge and thorough, Artificial Intelligence (AI) in Cell and Genetic Engineering is a valuable resource for readers in various research communities who want to learn more about the real-life application of artificial intelligence and machine learning in systems biology, biotechnology, bioinformatics, and health-informatics especially in the field of cell and genetic engineering.

 

Contents

Overview of Molecular Modelling in Drug Discovery with a Special Emphasis on the Applications of Artificial Intelligence.-  Integrative AI-Based Approaches to Connect the Multiome to Use Microbiome-Metabolome Interactive Outcome as Precision Medicine.- Artificial Intelligence (AI) Based Protein Structure Prediction and Analysis.- Artificial Intelligence in Cellular and Biomolecular Spectroscopy: A New Horizon.- R-Based Protocols to Predict Synthetic Lethal Interactions in Cancers using Machine-Learning Tools.- Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.- Integrating Genetic Insights and Artificial Intelligence for Enhanced Oral and Maxillofacial Cancer Care.- AI-Based Drug Discovery and Design for Different Genetic Designs.- AI-Assisted Cell Culture-System.- Review on Advancement of AI in Cell Engineering and Molecular Biology.- High-Throughput Virtual Screening of Small Molecule Modulators against Viral Proteins.- AI Revolutionizing Cell and Genetic Engineering: Innovations and Applications.- Recent Developments in the Application of Artificial Intelligence and Machine Learning in Early Screening and Diagnosis of Autism.- Artificial Intelligence in CRISPR-Cas Systems: A Review of Tool Applications.- Machine Learning Approaches for the Identification of Genetic Interactions.- Artificial Intelligence-Based Genome Editing in CRISPR/Cas9.- Harnessing the Power of AI in Cell and Genetic Engineering.- MLCDL: A Critical Practice and Implementation of Multi-Tissue Classification and Diagnosis Using Deep Learning Algorithm.- Classification of Breast Cancer Microarray Data and Identification of Responsible Genes using Rough Set Theory.- Deep-Genomics: Deep Learning Based Analysis of Genome-Sequenced Data for Identification of Gene Alterations.- The Use of AI for Phenotype-Genotype Mapping.- Interface of Artificial Intelligence with Conventional Biostatistics in Healthcare Research.- Review on Advancement of AI in Nutrigenomics.- In Silico Validation of AI-Assisted Drugs in Healthcare.- From DNA to Big Data: NGS Technologies and Their Applications.- Review on Advancement of AI in Synthetic Biology.

最近チェックした商品