タンパク質バイオインフォマティクスにおける大規模言語モデル<br>Large Language Models (LLMs) in Protein Bioinformatics (Methods in Molecular Biology)

個数:
  • 予約

タンパク質バイオインフォマティクスにおける大規模言語モデル
Large Language Models (LLMs) in Protein Bioinformatics (Methods in Molecular Biology)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781071646229

Full Description

This book presents a comprehensive collection of methods, resources, and studies that use large language models (LLMs) in the field of protein bioinformatics. Reflecting the swift pace of LLM development today, the volume delves into numerous LLM-based tools to investigate proteins science, from protein language models to the prediction of protein-ligand binding sites. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice to ensure success in future research.

 

Authoritative and practical, Large Language Models (LLMs) in Protein Bioinformatics serves as an ideal guide for scientists seeking to tap into the potential of artificial intelligence in this vital area of biological study.

Contents

A Survey of Pre-Trained Protein Language Models.- Enhancing Structure-Aware Protein Language Models with Efficient Fine-Tuning for Various Protein Prediction Tasks.- Exploring ProtFlash: An Efficient Approach to Protein Data Analysis.- Ranking Protein-Protein Models with Large Language Models and Graph Neural Networks.- Translating a GO Term List to Human Readable Function Description Using GO2Sum.- TransFun: A Tool of Integrating Large Language Models, Transformers, and Equivariant Graph Neural Networks to Predict Protein Function.- Using InterLabelGO+ for Accurate Protein Language Model-Based Function Prediction.- Functional Annotation of Proteomes Using Protein Language Models: A High-Throughput Implementation of the ProtTrans Model.- Advances in Language-Model-Informed Protein-Nucleic Acid Binding Site Prediction.- Practical Applications of Language Models in Protein Sorting Prediction: SignalP 6.0, DeepLoc 2.1, and DeepLocPro 1.0.- CNN-Meth: A Tool to Accurately Predict Lysine Methylation Sites Using Evolutionary Information-Based Protein Modeling.- Predicting the Pathogenicity of Human Protein Variants: Not Only a Matter of Residue Labeling.- A Survey of Biological Function Prediction Methods with Focus on Natural Language Processing (NLP) and Large Language Models (LLM).- PLMSearch and PLMAlign: Protein Language Model-Based Homologous Sequence Search and Alignment.- Large Context, Deeper Insights: Harnessing Large Language Models for Advancing Protein-Protein Interaction Analysis.- Prediction of Protein-Peptide Binding Sites Using PepBCL.- Predicting Peptide Bioactivity Using the Unified Model Architecture UniDL4BioPep.- CLAPE: Protein-Ligand Binding Site Prediction via Protein Language Models.- Large Language Model-Based Advances in Prediction of Post-Translational Modification Sites in Proteins.

最近チェックした商品