Time Series Decomposition and Seasonal Adjustment

個数:
  • 予約
  • ポイントキャンペーン

Time Series Decomposition and Seasonal Adjustment

  • ウェブストア価格 ¥29,961(本体¥27,238)
  • CRC Press(2026/03発売)
  • 外貨定価 US$ 140.00
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 544pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781041204619

Full Description

This book provides an in-depth examination of time series decomposition and seasonal adjustment, focusing on the X-13ARIMA-SEATS and TRAMO-SEATS methods. Seasonal adjustment removes distortions such as seasonal fluctuations and holiday effects from economic indicators (eg, GDP, CPI), enabling clearer insights into underlying trends, cycles, and shocks. These tools are vital for sound policymaking, accurate forecasting, and reliable international comparisons.

X-13ARIMA-SEATS, developed by the U.S. Census Bureau, combines empirical moving average filters with ARIMA/regARIMA modelling to handle outliers, calendar effects, and endpoint issues. TRAMO-SEATS, created by the Bank of Spain, uses a model-based strategy: TRAMO pre-adjusts data with ARIMA models, while SEATS applies signal extraction to decompose components. X-13ARIMA-SEATS excels with stable seasonal patterns, while TRAMO-SEATS provides rigorous solutions for complex holiday structures.

The book also examines modern challenges, including structural breaks from COVID-19, high-frequency data with multiple seasonalities, and the demand for real-time adjustments. It reviews innovations such as hybrid models combining machine learning with traditional filters, Bayesian state-space approaches, and adaptive methods like Kalman filters.

Intended for students, researchers, staff at national statistical agencies, central banks, and financial institutions, the book equips readers with methodological and practical tools to navigate evolving economic data landscapes.

Contents

List of Figures List of Tables Preface The Book Highlights 1 Introduction 2 Evolution of X-11 Family Seasonal Adjustment Methods 3 The Conceptual Framework for the General Theory of Seasonal Adjustment 4 X-11 Method Based on Moving Averages 5 Application of X-13ARIMA-SEATS Software 6 X-13ARIMA-SEATS Advanced Topics and Practice 7 TRAMO-SEATS: A Model-Based Time Series Decomposition Method 8 JDemetra+: Advanced Seasonal Adjustment Tools and Applications Chapter 9: Challenges and Future Directions of Seasonal Adjustment Methods BIBLIOGRAPHY

最近チェックした商品