The AI Cloud Infrastructure Blueprint : Practical Designs and Configurations for Scalable AI (2ND)

個数:
  • 予約
  • ポイントキャンペーン

The AI Cloud Infrastructure Blueprint : Practical Designs and Configurations for Scalable AI (2ND)

  • ウェブストア価格 ¥10,023(本体¥9,112)
  • Productivity Press(2026/03発売)
  • 外貨定価 US$ 48.99
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 455pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 216 p.
  • 言語 ENG
  • 商品コード 9781041166429

Full Description

This book offers a comprehensive, practice-driven guide to designing and managing robust AI cloud infrastructure systems for real-world applications.

As enterprises continue to adopt AI to enhance automation, decision-making, and customer engagement, there is a growing demand for cloud-native architectures that can scale with increasing data volumes, support model training, ensure operational efficiency, and meet stringent security and governance requirements. This book addresses that demand by equipping readers with the foundational knowledge and advanced strategies needed to build, deploy, and maintain AI systems on modern cloud platforms. What makes this book unique is its end-to-end perspective, which goes beyond traditional AI model development. It covers key pillars such as hybrid and multi-cloud strategies, container orchestration, serverless computing, edge AI deployment, AI governance, cost optimization, and sustainable computing all framed around the AI model lifecycle. Readers will gain practical insights through architectural diagrams, platform comparisons (AWS, Azure, GCP), and use cases across healthcare, finance, and manufacturing. It also explores the integration of AutoML, MLOps, quantum computing, and green AI within cloud ecosystems. This book fills a critical gap by merging cloud infrastructure engineering with AI-specific challenges, offering a rare blend of systems thinking and AI expertise.

Targeted toward architects, data scientists, DevOps engineers, cloud professionals, and graduate students, it serves as both a reference guide and a strategic roadmap for building future-ready AI systems in the cloud.

Contents

About the Authors. Preface. Introduction. CHAPTER 1: FOUNDATIONS OF CLOUD COMPUTING FOR AI. CHAPTER 2: ARCHITECTING CLOUD INFRASTRUCTURE FOR AI MODEL LIFECYCLE. CHAPTER 3: OPTIMIZING PERFORMANCE AND SCALABILITY OF AI IN THE CLOUD. CHAPTER 4: MANAGING COST, SECURITY, AND GOVERNANCE OF AI CLOUD INFRASTRUCTURE. CHAPTER 5: DATA MANAGEMENT AND STORAGE STRATEGIES FOR AI. CHAPTER 6: CLOUD-NATIVE AI SERVICES AND TOOLS. CHAPTER 7: HYBRID AND MULTI-CLOUD STRATEGIES FOR AI. CHAPTER 8: EDGE COMPUTING AND AI DEPLOYMENT BEYOND THE CLOUD. CHAPTER 9: AI ETHICS, BIAS, AND RESPONSIBLE AI IN THE CLOUD. CHAPTER 10: FUTURE TRENDS IN AI CLOUD INFRASTRUCTURE. CHAPTER 11: SCALABLE DATA PROCESSING CONNECTIONS FOR ARTIFICIAL INTELLIGENCE. CHAPTER 12: ADVANCED DEPLOYMENT AND MANAGEMENT STRATEGIES FOR SCALABLE AI. CHAPTER 13: INNOVATIONS IN AI INFRASTRUCTURE — A PATENTED APPROACH.

最近チェックした商品