Family of High-Ordered Integer-Valued Auto-Regressive Models and Applications

個数:
  • 予約

Family of High-Ordered Integer-Valued Auto-Regressive Models and Applications

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 148 p.
  • 言語 ENG
  • 商品コード 9781041150558

Full Description

This book tackles the complexities of integer-valued time series analysis, focusing on over-dispersion, excess zeros, and non-stationarity. It explores high-ordered INAR(p) models with diverse thinning mechanisms and innovation distributions, finding CML superior for inference. Addressing periodicity, harmonic functions are introduced for COVID-19 data. Novel BINAR(1) models with BPWE and SPWE innovations are applied to stock transactions, while new BPGL and SPGL bivariate distributions analyse crime data.

The book derives methodologies, tests performance via simulation, and provides real-life applications, filling a gap in existing literature. This comprehensive work significantly advances the field of integer-valued time series analysis by addressing key challenges such as over-dispersion and periodicity. The detailed exploration of high-ordered INAR(p) models under various thinning mechanisms and innovation distributions provides valuable insights into their performance, with the clear outperformance of the CML inferential method offering practical guidance for researchers. The innovative incorporation of harmonic functions to model the periodic nature of the COVID-19 data in Mauritius demonstrates a crucial adaptation to real-world phenomena. Furthermore, the development and application of novel BINAR(1) models and bivariate distributions like BPGL and SPGL expand the analytical toolkit for understanding the relationships between multiple integer-valued series, exemplified by their application to stock transactions and crime data. By deriving new methodologies, rigorously testing their performance through simulation, and illustrating their utility with diverse real-life applications, this book offers substantial theoretical and practical contributions to the field, addressing limitations in existing literature.

The target audience includes researchers, statisticians, and practitioners working with count data and time series analysis in fields like econometrics, finance, epidemiology, and criminology.

Contents

1 Introduction

2 State of Art

3 Simulation Study

4 Application: The Novel Coronavirus 2019 (COVID-19) in Mauritius

5 High-ordered integer-valued time series models with harmonic features

6 Exploring the Bivariate processes- The Bivariate INAR(1) Model with Paired Poisson- Weighted Exponential Distributions

7 Bivariate Poisson Generalized Lindley Distribution and the Associated BINAR(1) Process

8 Extension of BINAR(1) to BINAR(p) process

9 Summary and Future directions

最近チェックした商品