Smart Sensing with Digital Twins : Methane Emission Source Determination with sUAS (Fractional Order Thinking in Exploring the Frontiers of Stem)

個数:
  • 予約

Smart Sensing with Digital Twins : Methane Emission Source Determination with sUAS (Fractional Order Thinking in Exploring the Frontiers of Stem)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9781041132295

Full Description

This book explores the innovative use of small unmanned aircraft systems (sUAS)—commonly known as drones—for methane emissions monitoring (i.e., detection, localization, and quantification) by introducing smart sensing frameworks and digital twin technology.

Based on the concept of smart sensing, which combines mobile sensor data with physics-based models to provide actionable and timely insights, this book presents novel methods for monitoring and quantifying methane emissions, a potent greenhouse gas, using digital twins in single and multiple sUAS-based approaches. The first part of the book examines the methane sensing problem for detecting, locating, and quantifying emission sources, with case studies highlighting key observations and lessons learned from field experiments. The second part proposes what, why, and how digital twins should be used in environmental monitoring applications, covering both basic detection principles and advanced source localization and quantification techniques. This section shows how digital twins can enhance sUAS-based source detection and smart sensing methods.

With practical tools and field-tested examples, this book serves as both an introductory guide and advanced reference to environmental monitoring, and is particularly valuable to researchers, students, engineers, and environmental professionals in engineering, environmental studies, and technology.

Contents

Section I: From Detection to Quantification: sUAS-based Methane
Sensing Techniques 1. The Methane Sensing Problem 2. Emission Source Detection 3. Emission Source Localization 4. Emission Source Quantification 5. Case Studies: LDAQ with sUAS Section II: Embedding Smartness to the Emission Source Determination Problem Solutions 6. Digital Twin Framework 7. Case Studies: Digital Twins 8. Smart Sensing, Sensor Placement, and the Observability Gramian 9. Case Studies: Smart Sensing 10. Conclusions and Best Practices

最近チェックした商品