Data-Driven Global Optimization Methods and Applications

個数:
  • 予約

Data-Driven Global Optimization Methods and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9781041065753

Full Description

This book presents recent advances in data-driven global optimization methods, combining theoretical foundations with real-world applications to address complex engineering optimization challenges.

The book begins with an overview of the state of the art, key technologies and standard benchmark problems in the field. It then delves into several innovative approaches: space reduction-based, hybrid surrogate model-based and multi-surrogate model-based global optimization, followed by surrogate-assisted constrained global optimization, discrete global optimization and high-dimensional global optimization. These methods represent a variety of optimization techniques that excel in both optimization capability and efficiency, making them ideal choices for complex engineering optimization problems. Through benchmark test problems and real-world engineering applications, the book illustrates the practical implementation of these methods, linking established theories with cutting-edge research in industrial and engineering optimization.

Both a professional book and an academic reference, this title will provide valuable insights for researchers, students, engineers and practitioners in a variety of fields, including optimization methods and algorithms, engineering design and manufacturing and artificial intelligence and machine learning.

Contents

1. Introduction 2. Data-Driven Optimization Framework 3. Benchmark Functions for Data-Driven Optimization Methods 4. MSSR: Multi-Start Space Reduction Surrogate-Based Global Optimization Method 5. SOCE: Surrogate-Based Optimization with Clustering-Based Space Exploration for Expensive Multimodal Problems 6. HSOSR: Hybrid Surrogate-Based Optimization Using Space Reduction for Expensive Black-Box Functions 7. MGOSIC: Multi-Surrogate-Based Global Optimization Using a Score-Based Infill Criterion 8. SCGOSR: Surrogate-Based Constrained Global Optimization Using Space Reduction 9. KTLBO: Kriging-Assisted Teaching-Learning-Based Optimization to Solve Computationally Expensive Constrained Problems 10. KDGO: Kriging-Assisted Discrete Global Optimization for Black-Box Problems with Costly Objective and Constraints 11. SAGWO: Surrogate-Assisted Grey Wolf Optimization for High-Dimensional, Computationally Expensive Black-Box Problems

最近チェックした商品