Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms

個数:
  • 予約

Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781041003540

Full Description

Fog and edge computing are two paradigms that have emerged to address the challenges associated with processing and managing data in the era of the Internet of Things (IoT). Both models involve moving computation and data storage closer to the source of data generation, but they have subtle differences in their architectures and scopes. These differences are one of the subjects covered in Optimizing Edge and Fog Computing Applications with AI and Metaheuristic Algorithms. Other subjects covered in the book include:

Designing machine learning algorithms that are aware of the resource constraints at the edge and fog layers ensures efficient use of computational resources.
Resource-aware models using ML and Deep leaning models that can adapt their complexity based on available resources and balancing the load, allowing for better scalability.
Implementing secure ML algorithms and models to prevent adversarial attacks and ensure data privacy.
Securing the communication channels between edge devices, fog nodes, and the cloud to protect model updates and inferences.
Kubernetes container orchestration for fog computing.
Federated learning that enables model training across multiple edge devices without the need to share raw data.

The book discusses how resource optimization in fog and edge computing is crucial for achieving efficient and effective processing of data close to the source. It explains how both fog and edge computing aim to enhance system performance, reduce latency, and improve overall resource utilization. It examines the combination of intelligent algorithms, effective communication protocols, and dynamic management strategies required to adapt to changing conditions and workload demands. The book explains how security in fog and edge computing requires a combination of technological measures, advanced techniques, user awareness, and organizational policies to effectively protect data and systems from evolving security threats. Finally, it looks forward with coverage of ongoing research and development, which are essential for refining optimization techniques and ensuring the scalability and sustainability of fog and edge computing environments.

Contents

1. Introduction to Resource Optimization in Fog and Edge Computing 2. Deep Reinforcement Learning-Based Task Scheduling in Edge Computing 3. Supervised Machine Learning for Load Balancing in Fog Environments 4. Blockchain-Based Secure Data Sharing System in Fog-Edge System 5. Securing IoT System Using ML Models 6. Federated Machine Learning Algorithm Aggregation Strategy for Collaborative Predictive Maintenance 7. Advance Machine Learning Algorithm Aggregation Strategy for Decentralized Collaborative Models 8. Artificial Intelligence and Machine Learning based Predictive Maintenance in Fog and Edge Computing Environment 9. Deep Reinforcement Learning-Based Task Scheduling in Edge Computing 10. Secure, Adaptable, and Collaborative AI: Federated Machine Learning Enhanced with Meta-Learning and Differential Privacy 11. EP-MPCHS: Edge Server-based Cloudlet Offloading Using Multi-Core and Parallel Heap Structures

最近チェックした商品