Bivariate Integer-Valued Time Series Models : Bivariate Models

個数:

Bivariate Integer-Valued Time Series Models : Bivariate Models

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 216 p.
  • 言語 ENG
  • 商品コード 9781032987675
  • DDC分類 519.55

Full Description

This book proposes some novel models based on the autoregressive and moving average structures under various distributional assumptions of the innovation series for analysing non-stationary bivariate time series of counts.

Time series of count responses are recorded for different correlated variables which may be marginally dispersed relative to their means, may exhibit different levels of dispersion and may be commonly influenced by one or more dynamic explanatory variables. Analysis of such type of bivariate time series data is quite challenging and the challenge mounts up further if these time series are non-stationary. This book proposes some bivariate models that allow for different levels of dispersion as well as non-stationarity. Specifically, BINAR(1) and BINMA(1) models under Poisson, NB and COM-Poisson innovations are constructed and tested. Another important contribution of this book is in developing a novel estimation procedure for estimating the parameters of the proposed BINAR(1) and BINMA(1) models. Hence, a new estimation approach based on the GQL is proposed. Monte-Carlo simulations are implemented to assess the performance of the GQL. In some simple cases of stationarity, we also compare the GQL with the other estimation techniques such as CMLE and FGLS.

This book is a useful resource for undergraduate students, postgraduate students, researchers and academics in the field of time series models.

Contents

1. Introduction. 2. Constrained BINAR(1) Model with Correlated Poisson Innovations. 3. Constrained BINMA(1) Model with Correlated Poisson Innovations. 4. Unconstrained BINAR(1) Model with Poisson Innovations. 5. Unconstrained BINMA(1) Model with Poisson Innovations. 6. Constrained BINAR(1) Model with Correlated NB Innovations. 7. Constrained BINMA(1) Model with Correlated NB Innovations. 8. Unconstrained BINAR(1) Model with NB Innovations. 9. Unconstrained BINMA(1) Model with NB Innovations. 10. Constrained BINAR(1) Model with Correlated COM-Poisson Innovations. 11. Constrained BINMA(1) Model with Correlated COM-Poisson Innovations. 12. Unconstrained BINAR(1) Model with COM-Poisson Innovations. 13. Unconstrained BINMA(1) Model with COM-Poisson Innovations. 14. Conclusion and Future Directions.

最近チェックした商品