Hardware Technologies for Artificial Intelligence : AI Chips, Ising Machines, and In-Memory Computing

個数:

Hardware Technologies for Artificial Intelligence : AI Chips, Ising Machines, and In-Memory Computing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 224 p.
  • 言語 ENG
  • 商品コード 9781032985121
  • DDC分類 006.3

Full Description

In this comprehensive reference work for researchers, engineers, and students, Kawahara provides a one-stop exploration of next-generation computing at the LSI circuit level, with a focus on the integration of AI, advanced LSI design, Ising machines, and memory innovations.

While current GPUs have high parallel processing capabilities suitable for computations on large datasets, their power consumption is approaching its limit and requires further development. Additionally, edge computing is becoming increasingly important alongside cloud computing. Amid these significant technological trends, this book provides readers with important insights into next-generation computing, namely (1) neural network (artificial intelligence) LSIs and their low power and high performance, (2) hardware design technology for combinatorial optimization problems and Ising machines, and (3) semiconductor memory and data-centric computing. Kawahara first describes the basics of LSI design and neural networks before then describing their large-scale integration, power efficiency and performance enhancements. He then also explains hardware design techniques for Ising machines, offers case studies of fully coupled Ising machine LSI. Last, he discusses the basics of semiconductor memory, near/in-memory AI computing, and then examines the future prospects. Readers will be able to apply this knowledge to the design and manufacture of such devices to overcome the limitations of current hardware and computational methods, driving future advancements in artificial intelligence and optimization.

This is a valuable reference for students, engineers and researchers alike in this field. As it begins with the basics, it enables all readers to follow the direction of next-generation computing and its important technical content without the need for prior knowledge or reference to other books.

Contents

1. Introduction: AI computing 2. Overview of artificial intelligence hardware LSI (AI chips) and its components 3. Basics of LSI (Large Scale Integrated Circuits) for AI 4. Basic structure of AI chips and various neural networks 5. Low-power, high-performance AI chips structure and related computing 6. Ising machines and combinatorial optimization problem 7. Fully coupled Ising machines (A case study) 8. Semiconductor Memory and Computing 9. Main Semiconductor Memory Features 10. AI computing with semiconductor memory (In-Memory Computing) 11. Future Prospects

最近チェックした商品