Computational Intelligence for Connective Cognition Networks : Advances, and Applications (Advancing Science and Engineering through Artificial Intelligence, Machine Learning, and Mathematical Modeling)

個数:
  • 予約

Computational Intelligence for Connective Cognition Networks : Advances, and Applications (Advancing Science and Engineering through Artificial Intelligence, Machine Learning, and Mathematical Modeling)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781032942346

Full Description

This book explores deep learning architectures such as convolutional neural networks and recurrent neural networks for tasks like image analysis, speech recognition, and natural language processing within network paradigms. It uses machine learning algorithms such as neural networks, support vector machines, and decision trees for data analysis and prediction tasks.

This book:

Covers a wide range of topics within network paradigms, including intelligence modeling, sustainability, quantum computing, and network security.
Utilizes various machine learning algorithms such as neural networks, support vector machines, and decision trees for data analysis, and prediction tasks.
Addresses contemporary issues like fake news detection, social media analysis, and cybersecurity.
Employs network analysis techniques to understand the structure and dynamics of complex systems, including social networks, communication networks, and biological networks.
Explores the integration of quantum computing principles and algorithms to solve computational intelligence tasks efficiently, especially in quantum-based network paradigms.

It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields including electrical engineering, electronics and communications engineering, computer engineering, and information technology.

Contents

1. Enhancing ECG Analysis Through Parametric Quartic Spline Modeling and Machine Learning Classification. 2. Quantum Networking Paradigm. 3. Genetic Algorithm-Based Framework for Optimizing Image Enhancement. 4. Machine Learning Security on Drones or UAV. 5. Image Forgery Detection. 6. The Future of Road Safety Integrating Computational Intelligence with Network Paradigms and AI Innovations. 7. Document Classification Engine to Segregate Multi-lingual PDF Documents. 8. FNDetector: Fake News Detection using Combinations of Various Features. 9. Survey of Visual Deepfake Detection Methods. 10. Empowering Educators: Leveraging Large Language Models for Lecture Preparation Material Development.

最近チェックした商品