Fuzzy Sets and Triangular Norms : Aggregation in Decision-Aided Intelligent Systems (Intelligent Data-driven Systems and Artificial Intelligence)

個数:
  • 予約

Fuzzy Sets and Triangular Norms : Aggregation in Decision-Aided Intelligent Systems (Intelligent Data-driven Systems and Artificial Intelligence)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781032867670

Full Description

This book aims to serve as a comprehensive resource that equips readers with the knowledge and practical skills needed to navigate the intricacies of fuzzy set theory, t-norms, and their integration into decision-aided intelligent systems. It provides a comprehensive understanding of aggregation operators and their role in data fusion, risk analysis, and expert opinion aggregation.

New aggregation operators, entropy measures, t-norm, and t-conorm structures are developed across multiple fuzzy set extensions to better model uncertainty and hesitation in decision-making.
A wide range of real-world applications, including, tourism planning, smart cities, urban mobility, water security, smart campus automation, energy facility siting, and firefighting helicopter selection, are addressed using advanced multi-criteria decision making methods.
The chapters collectively emphasize sustainable, data-driven, and uncertainty-aware decision support, contributing solutions in areas such as environmental protection, resource optimization, public services, and technological infrastructure.
Innovative techniques, such as Lambert W-based aggregation operators, Choquet integral-based entropy, confidence-level aggregation, and fuzzy-machine learning hybrid models, improve the representation of interaction, ambiguity, and complexity in multi-criteria decision problems.

The text is primarily written for senior undergraduates, graduate students, and academic researchers in diverse fields including mathematics, industrial engineering, supply chain management, operations research, manufacturing engineering, production engineering, and applied mathematics.

Contents

Preface

About the Editors

List of Contributors

Chapter 1: Lambert Aggregation Operators For Intuitionistic Fuzzy Multi-Criteria Decision Making

Chapter 2: A Group Decision Aggregation-Based IVIF-MARCOS and Goal Programming Approach for Intelligent Decision-Making in Tourism Marketing

Chapter 3: Sustainable Urban Logistics Evaluation in Smart Cities: A Multi-Criteria Group Decision-Making Approach Using the Hesitant Fuzzy Linguistic ARAS Method

Chapter 4: Choquet Integral-Based q-rof Entropy And Its Application

to Information Technologies

Chapter 5: Hybrid Approach using Interval Type-2 Fuzzy TOPSIS and Unsupervised Machine Learning for Water Security and Water Source Area Challenges

Chapter 6: A Group Decision Making by Hesitant Fuzzy Set: Determination of Criterion Weights in Biomass Power Plant Investment

Chapter 7: Fuzzy Set Theory Applications in Smart Cities and IoT

Chapter 8: Smart Campus Process Automation: Process Prioritization through Triangular Fuzzy AHP

Chapter 9: Dombi t-norm and t-conorm Based Aggregation Operators in an

Interval-Valued Fermatean Fuzzy Framework with Confidence Levels

Chapter 10: Evaluation of Heavy Forest Fire Helicopters Using q-rung Orthopair Fuzzy Sets Based TOPSIS Decision Making Model

Chapter 11: Some Interval-Valued Intuitionistic Fuzzy Confidence Level-Based

Aggregation Operators Using Frank t-norm and t-conorms

最近チェックした商品