Applications of Federated Learning in Technological Advancements : Use Cases and Applications

個数:
  • 予約

Applications of Federated Learning in Technological Advancements : Use Cases and Applications

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 172 p.
  • 言語 ENG
  • 商品コード 9781032859514

Full Description

This book explores the applications and advancements of Federated Learning across diverse sectors, focusing on its integration with cutting-edge technologies like IoT, AI, Blockchain, and Digital Twins. Real-world examples and case studies illustrate Federated Learning's role in healthcare, smart cities, and maritime applications while addressing critical concerns such as security. It provides insights into Federated Learning's transformative potential, offering practical strategies for intelligent systems and sustainable environments.

Focuses on the Federated Learning-based Model Optimization, addressing the significance of IoT and Federated Learning in the evolution of intelligent systems for various applications
Describes the different optimisation techniques of federated learning systems from a practical point of view
Highlights economic, social, and environmental impacts of smart technologies and provides insights into IoT, 5G/6G communication, and computing standards
Provides analysis of the use cases of federated learning regarding the development of IoT, AI, Blockchain, Digital twins
Offers strategies to overcome challenges for overcoming challenges associated with Federated Learning systems, including connectivity, computation, threats, privacy and security issues.

It covers fundamental concepts, practical implementations, and trends to serve as a reference resource for professionals and researchers in the field.

Contents

1. Journey Towards Federated Learning: Fundamentals, Tools Paradigms, Opportunities and Challenges 2. Federated Learning-based algorithms for deployment and model optimization 3. Automation of AI and IoT-based Data-driven Decision-Making Approaches using Federated Learning Systems 4. Federated Learning for sustainable development using IoT/Edge Computing Systems 5. Advances in 5G/6G enabled federated reinforcement learning in IoT 6. Blockchain Integrated Federated Learning for IoT-based Smart Applications 7. Federated Learning in Heterogeneous Unmanned Aerial Vehicle 8. Advanced Technologies for Federated learning in Smart Cities and its use cases 9.Federated Deep Learning for Cyber-Physical Systems in Real-World Scenarios 10. Use-Cases and Scenarios for Federated Learning Adoption in IoT.

最近チェックした商品