Artificial Intelligence and Computer Vision for Ecological Informatics

個数:

Artificial Intelligence and Computer Vision for Ecological Informatics

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 396 p.
  • 言語 ENG
  • 商品コード 9781032836430
  • DDC分類 333.95028563

Full Description

Ecological informatics, more commonly known as Ecoinformatics, is the study of environmental sciences and ecological information. It is an emerging interdisciplinary framework for the management, analysis, and synthesis of ecological data with the help of advanced computational intelligence algorithms. Management in this context is data acquisition, preprocessing, and sharing the data. Analysis and synthesis are the process of extracting useful information and forecasting with the help of intelligent algorithms.

The aim of this book is to encapsulate concepts and theories of artificial intelligence and computer vision algorithms used for the evaluation of various ecological informatics applications. It focuses on soft computing, machine learning, deep learning, artificial intelligence, bio-inspired algorithms, data analysis tools, data visualization tools, and computer vision algorithms used in ecological informatics. The book covers remote sensing applications, water bodies evaluation, agriculture mapping, aquatic mapping, forest management, and terrestrial ecosystems.

The book will be useful to students, researchers, scientists, and field experts in directing their work towards this domain, to deliver and design models and prototypes for the benefit of society and the environment.

Contents

Preface. Drone Importance and their Necessity in Future Generation Agriculture. Advances in Wildfire Spread Detection and Prediction: Techniques, Challenges, and Applications. Leveraging Remote Sensing for Agriculture Mapping: Techniques, Applications, and Future Directions. Basil Crop Detection Using Computer Vision and Deep Learning Approach. Remote Sensing for Agriculture Mapping. Advances of Remote Sensing Technologies in Agriculture: Current Progress and Future Perspectives. Remote Sensing for Sustainable Agriculture: A Machine Learning Approach to Optimizing Farm Yield and Economic Returns. Leveraging AI and CV Technologies to Advance Water Quality Assessment in Ecological Informatics. Tracing Plant Growth Patterns: Employing Artificial Intelligence and Computer Vision for Explicit Mapping. AI-Driven Circular Economy: Innovations in Agro and Food Waste Management. Advancements in Machine Learning for Water Quality Assessment. Enhancing Agricultural Support with AI in the Farmer ChatBot Framework. Federated Learning: A Game-Changer in Agricultural Decision-Making and Precision Farming. Clean Streams, Clear Futures: AI Innovations in Water Quality Monitoring. Transforming Waste into Resources: AI's Impact on Wastewater Treatment. Soil Moisture Evaluation by Artificial Intelligence and Computer Vision. Crop Yield Estimation. Soil Fertility Evaluation. Advancements in Soil Moisture Evaluation: Sensors, Remote Sensing and Artificial Intelligence. Sustainable Agriculture: Economic Perspectives on AI and ML in Crop Yield Estimation. Index.

最近チェックした商品