データサイエンスとPythonによる解析法(第2版)<br>Data Science and Analytics with Python (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

個数:

データサイエンスとPythonによる解析法(第2版)
Data Science and Analytics with Python (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 474 p.
  • 言語 ENG
  • 商品コード 9781032772493
  • DDC分類 006.312

Full Description

Since the first edition of "Data Science and Analytics with Python" we have witnessed an unprecedented explosion in the interest and development within the fields of Artificial Intelligence and Machine Learning. This surge has led to the widespread adoption of the book, not just among business practitioners, but also by universities as a key textbook. In response to this growth, this new edition builds upon the success of its predecessor, expanding several sections, updating the code to reflect the latest advancements in Python libraries and modules, and addressing the ever-evolving landscape of generative AI (GenAI).

This updated edition ensures that the examples and exercises remain relevant by incorporating the latest features of popular libraries such as Scikit-learn, pandas, and Numpy. Additionally, new sections delve into cutting-edge topics like generative AI, reflecting the advancements and the expanding role these technologies play. This edition also addresses crucial issues of explainability, transparency, and fairness in AI. These topics have rightly gained significant attention in recent years. As AI integrates more deeply into various aspects of our lives, understanding and mitigating biases, ensuring fairness, and maintaining transparency become paramount. This book provides comprehensive coverage of these topics, offering practical insights and guidance for data scientists and analysts.

Designed as a practical companion for data analysts and budding data scientists, this book assumes a working knowledge of programming and statistical modelling but aims to guide readers deeper into the wonders of data analytics and machine learning. Maintaining the book's structure, each chapter stands alone as much as possible, allowing readers to use it as a reference as well as a textbook. Whether revisiting fundamental concepts or diving into new, advanced topics, this book offers something valuable for every reader.

Contents

1. Trials and Tribulations of a Data Scientist 2. Python: For Something Completely Different 3. The Machine that Goes "Ping": Machine Learning and Pattern Recognition 4. The Relationship Conundrum: Regression 5. Jackalopes and Hares: Clustering 6. Unicorns and Horses: Classification 7. Decisions, Decisions: Hierarchical Clustering, Decision Trees and Ensemble Techniques 8. Less is More: Dimensionality Reduction 9. Kernel Tricks up the Sleeve: Support Vector Machines Appendix. Pipelines in Scikit-Learn Bibliography Index

最近チェックした商品