Cognitive Fairness-Aware Techniques for Human-Machine Interface (Chapman & Hall/crc Internet of Things)

個数:

Cognitive Fairness-Aware Techniques for Human-Machine Interface (Chapman & Hall/crc Internet of Things)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9781032767093
  • DDC分類 004.019

Full Description

This book explores the critical issue of fairness in human-machine interfaces. It delves into the integration of technology and cognitive science to develop AI systems that are unbiased, reliable, and user-friendly. The book also sheds light on emotional data processing in AI accelerators and federated learning modules. Additionally, it covers machine learning, knowledge representation, and the application of knowledge graphs to understand and optimize the behaviour of AI assistance devices.

Features:

Explains complex issues of Cognitive Fairness Aware Contextual Proactive Federated Protocol collects data and identifies individual emotional issues and resolves them by contextual solitary proactive communication
Discusses emotional data processing challenges through AI accelerator with federated learning module to generate periodical counselling messages
Addresses data analysis anomalies in Graph Database Modelling by anom-aly prediction and anomaly detection
Describes anomaly detection techniques in the form of abnormal data records, messages, events, groups, and/or other unexpected observations in graph database modelling
Explains how outlier detection for data analysis deals with the detection of patterns in Graph Database

This book is for researchers, academics, students, AI practitioners and developers, ethics experts in AI technology and machine-learning practitioners interested in fairness in human-machine interfaces.

Contents

1. Federated learning by Contextual Model for Advanced AI Assistance 2. Computational Modeling for Personalized Emotion Data and Visual Analytics to Predicting Habits 3. A review on Computational modeling for Personalize demotion and visual analytics to predicting habits 4. An impact of AI-Driven Sentiment Analysis Improves Stock Market Trend Predictions, Risk Management, and Ethics 5. Transformative Strategies for AIED Interaction on the evolution of AI Learning Companions in the Era of Human-Robot Interaction in EFL Settings 6. Comprehensive Overview of Graph Database: Types, Algorithms, Visualization Tools, Applications, and Key Challenges 7. Context-aware Knowledge Base Engineering for Anomaly Detection and Predictive Maintenance in Graph Databases 8. Context Anomaly Identification Algorithm using Dirichlet Graph based mapping in health care analytics 9. Human-Machine Interaction Failure for Indian Companies-An Exploratory Study 10. Practical Solutions for Data Consistency and Query Performance in Graph Database and Search Engine Integration 11. Co-evolution of Human and Machine Intelligence 12. A Novel Graph Machine Learning Pipeline for Anomaly Detection 13. Implementing a Graph Machine Learning Pipeline for Anomaly Detection 14. Proactive Human - Machine Collaboration 15. Proactive Assistance between Human and Machine

最近チェックした商品