Soft Computing and Machine Learning : A Fuzzy and Neutrosophic View of Reality (Computational Methods for Industrial Applications)

個数:

Soft Computing and Machine Learning : A Fuzzy and Neutrosophic View of Reality (Computational Methods for Industrial Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781032746326
  • DDC分類 006.3

Full Description

This reference text covers the theory and applications of soft computing and machine learning and presents readers with the intelligent fuzzy and neutrosophic rules that require situations where classical modeling approaches cannot be utilized, such as when there is incomplete, unclear, or imprecise information at hand or inadequate data. It further illustrates topics such as image processing, and power system analysis.

This book:

Discusses soft computing techniques including fuzzy Logic, rough sets, neutrosophic sets, neural networks, generative adversarial networks, and evolutionary computation
Examines novel and contemporary advances in the fields of soft computing, fuzzy computing, neutrosophic computing, and machine learning systems, as well as their applications in real life
Serves as a comprehensive reference for applying machine learning and neutrosophic sets in real-world applications such as smart cities, healthcare, and the Internet of Things
Covers topics such as image processing, bioinformatics, natural language processing, supply chain management, and cybernetics
Illustrates classification of neutrosophic machine learning, neutrosophic reinforcement learning, and applications of neutrosophic machine learning in emerging industries

The text is written for senior undergraduate students, graduate students, and academic researchers in the fields of electrical engineering, electronics and communications engineering, computer science and engineering, and information technology.

Contents

1. Enhancing the Performance of Power Amplifiers by Leveraging on Fuzzy Logic Techniques. 2. Neutrosophic Cognitive Maps: Theoretical and Mathematical Formulations, Literature Review and Applications. 3. Every aspect of Handling Class Imbalance in the Healthcare Sector. 4. Introduction to Neutrosophic Logic in the Narrow Sense. 5. Machine Learning vs. Neutrosophic Machine Learning. 6. A case study on the use of the fuzzy MOORA approach in University Selection. 7. Multi-criteria Feature Selection Evaluation for Multi-Label Text Classification: Hesitant Fuzzy Geometric approach. 8. Smart Home Automated Face Recognition. 9. Estimating the Population Mean Under Non Responses Using Neutrosophic Statistic Tools. 10. Revolutionizing Data Analytics: The Cutting-Edge Role of Soft Computing Techniques. 11. AI-Infused Respiratory Diagnostics: A New Era in Healthcare. 12. Intersection of Neutrosophy and Machine Learning: Applications in Agriculture. 13. Newfangled Methods for Interval Neutrosophic Sets. 14. Synthesis of Machine Learning Applications Cutting-Edge Modern Agriculture: Projecting Fuzzy Logic Crop Health Monitoring via Soil and Plant Sensors Technologies.

最近チェックした商品