連合学習:集合知の力を解き放つ<br>Federated Learning : Unlocking the Power of Collaborative Intelligence (Chapman & Hall/crc Artificial Intelligence and Robotics Series)

個数:

連合学習:集合知の力を解き放つ
Federated Learning : Unlocking the Power of Collaborative Intelligence (Chapman & Hall/crc Artificial Intelligence and Robotics Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 182 p.
  • 言語 ENG
  • 商品コード 9781032724324
  • DDC分類 006.3

Full Description

Federated Learning: Unlocking the Power of Collaborative Intelligence is a definitive guide to the transformative potential of federated learning. This book delves into federated learning principles, techniques, and applications, and offers practical insights and real-world case studies to showcase its capabilities and benefits.

The book begins with a survey of the fundamentals of federated learning and its significance in the era of privacy concerns and data decentralization. Through clear explanations and illustrative examples, the book presents various federated learning frameworks, architectures, and communication protocols. Privacy-preserving mechanisms are also explored, such as differential privacy and secure aggregation, offering the practical knowledge needed to address privacy challenges in federated learning systems. This book concludes by highlighting the challenges and emerging trends in federated learning, emphasizing the importance of trust, fairness, and accountability, and provides insights into scalability and efficiency considerations.

With detailed case studies and step-by-step implementation guides, this book shows how to build and deploy federated learning systems in real-world scenarios - such as in healthcare, finance, Internet of things (IoT), and edge computing. Whether you are a researcher, a data scientist, or a professional exploring the potential of federated learning, this book will empower you with the knowledge and practical tools needed to unlock the power of federated learning and harness the collaborative intelligence of distributed systems.

Key Features:

Provides a comprehensive guide on tools and techniques of federated learning
Highlights many practical real-world examples
Includes easy-to-understand explanations

Contents

1. Introduction to Federated Learning

Vaneeza Mobin

2. Foundations of Deep Learning

Sajid Ullah

3. Chronicles of Deep Learning

Syed Atif Ali Shah and Nasir Algeelani

4. User Participation and Incentives in Federated Learning

Muhammad Ali Zeb and Samina Amin

5. A Hybrid Recommender System for MOOC Integrating Collaborative and Content-based Filtering

Samina Amin and Muhammad Ali Zeb

6. Federated Learning in Healthcare

Muhammad Hamza

7. Scalability and Efficiency in Federated Learning

Alyan Zaib

8. Privacy Preservation in Federated Learning

P. Keerthana, M. Kavitha, and Jayasudha Subburaj

9. Federated Learning: Trust, Fairness, and Accountability

Sana Daud

10. Federated Optimization Algorithms

S. Biruntha, S. Rajalakshmi, M. Kavitha, and Rama Ranjini

最近チェックした商品