Measure and Integral : Theory and Practice (Textbooks in Mathematics)

個数:

Measure and Integral : Theory and Practice (Textbooks in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 510 p.
  • 言語 ENG
  • 商品コード 9781032712420
  • DDC分類 515.42

Full Description

This accessible introduction to the topic covers the theory of measure and integral, as introduced by Lebesgue and developed in the first half of the 20th century. It leads naturally to Banach spaces of functions and linear operators acting on them.

This material in Measure and Integral: Theory and Practice is typically covered in a graduate course and is almost always treated in an abstract way, with little or no motivation. The author employs a plethora of examples and exercises and strives to motivate every concept with its historical background. This textbook is accessible to a wider range of students, including at the undergraduate level.

A major problem facing anyone teaching measure theory is how to combine the elementary approach (measure on the real line or in the plane) and the abstract measure theory. The author develops a theory of measure in the plane, then shows how to generalize these ideas to an abstract setting.

The result is a textbook accessible to a wider range of students.

The material requires a good understanding of topics often referred to as advanced calculus, such as Riemann integration on Euclidean spaces and series of functions. Also, a reader is expected to be proficient in the basics of set theory and point-set topology, preferably including metric spaces.

Contents

Prologue

I Preliminaries

1 Set Theory

1.1 Sets

1.2 Functions

1.3 Cardinal and Ordinal Numbers

1.4 The Axiom of Choice

2 Metric Spaces

2.1 Elementary Theory of Metric Spaces

2.2 Completeness

2.3 Compactness

2.4 Limits of Functions

2.5 Baire's Theorem

3 Geometry of the Line and the Plane

II Measure Theory

4 Lebesgue Measure on R2

4.1 Jordan Measure

4.2 Lebesgue Measure

4.3 The σ-Algebra of Lebesgue Measurable Sets

5 Abstract Measure

5.1 Measures and Measurable Sets

5.2 Carath'eodory Extension of Measure

5.3 Lebesgue Measure on Euclidean Spaces

5.4 Beyond Lebesgue σ-Algebra

5.5 Signed Measures

6 Measurable Functions

6.1 Definition and Basic Facts

6.2 Fundamental Properties of Measurable Functions

6.3 Sequences of Measurable Functions

III Integration Theory

7 The Integral

7.1 About Riemann Integral

7.2 Integration of Nonnegative Measurable Functions

7.3 The Integral of a Real-Valued Function

7.4 Computing Lebesgue Integral

8 Integration on Product Spaces

8.1 Measurability on Cartesian Products

8.2 Product Measures

8.3 The Fubini Theorem

9 Differentiation and Integration

9.1 Dini Derivatives

9.2 Monotone Functions

9.3 Functions of Bounded Variation

9.4 Absolutely Continuous Functions

9.5 The Radon-Nikodym Theorem

IV An Introduction to Functional Analysis

10 Banach Spaces

10.1 Normed Linear Spaces

10.2 The Space Lp(X, µ)

10.3 Completeness of Lp(X, µ)

10.4 Dense Sets in Lp(X, µ)

10.5 Hilbert Space

10.6 Bessel's Inequality and Orthonormal Bases

10.7 The Space C(X)

11 Continuous Linear Operators Between Banach Spaces

11.1 Linear Operators

11.2 Banach Space Isomorphisms

11.3 The Uniform Boundedness Principle

11.4 The Open Mapping and Closed Graph Theorems

12 Duality

12.1 Linear Functionals

12.2 The Hahn-Banach Theorem

12.3 The Dual of Lp(X, µ)

12.4 The Dual Space of L∞(X, µ)

12.5 The Dual Space of C(X)

12.6 Weak Convergence

Epilogue

Solutions and Answers to Selected Exercises

Bibliography

Subject Index

Author Index

最近チェックした商品