ストロガッツ著/非線形ダイナミクスとカオス : 数学的基礎から物理・生物・化学・工学への応用まで(第3版)<br>Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, Chemistry, and Engineering (3RD)

個数:

ストロガッツ著/非線形ダイナミクスとカオス : 数学的基礎から物理・生物・化学・工学への応用まで(第3版)
Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, Chemistry, and Engineering (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 616 p.
  • 言語 ENG
  • 商品コード 9781032707891
  • DDC分類 501.185

Full Description

The goal of this third edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering is the same as previous editions: to provide a good foundation - and a joyful experience - for anyone who'd like to learn about nonlinear dynamics and chaos from an applied perspective.

The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

The prerequisites are comfort with multivariable calculus and linear algebra, as well as a first course in physics. Ideas from probability, complex analysis, and Fourier analysis are invoked, but they're either worked out from scratch or can be safely skipped (or accepted on faith).

Changes to this edition include substantial exercises about conceptual models of climate change, an updated treatment of the SIR model of epidemics, and amendments (based on recent research) about the Selkov model of oscillatory glycolysis. Equations, diagrams, and every word has been reconsidered and often revised. There are also about 50 new references, many of them from the recent literature.

The most notable change is a new chapter. Chapter 13 is about the Kuramoto model.

The Kuramoto model is an icon of nonlinear dynamics. Introduced in 1975 by the Japanese physicist Yoshiki Kuramoto, his elegant model is one of the rare examples of a high-dimensional nonlinear system that can be solved by elementary means.

Students and teachers have embraced the book in the past, its general approach and framework continue to be sound.

Contents

Chapter 1. Overview. Chapter 2. Flows on the Line. Chapter 3. Bifurcations. Chapter 4. Flows on the Circle. Chapter 5. Linear Systems. Chapter 6. Phase Plane. Chapter 7. Limit Cycles. Chapter 8. Bifurcations Revisited. Chapter 9. Lorenz Equations. Chapter 10. One-Dimensional Maps. Chapter 11. Fractals. Chapter 12. Strange Attractors. Chapter 13. Kuramoto Model.

最近チェックした商品