Artificial Intelligence in Heat Transfer : Advances in Numerical Heat Transfer Volume VI

個数:

Artificial Intelligence in Heat Transfer : Advances in Numerical Heat Transfer Volume VI

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781032688107
  • DDC分類 621.4022

Full Description

Artificial Intelligence in Heat Transfer shows how artificial intelligence (AI) tools and techniques, such as artificial neural networks, machine learning algorithms, genetic algorithms, etc., provide practical benefits specific to thermal sciences. It presents case studies involving heat and mass transfer, multi-objective optimization, conjugate heat transfer, nanofluids, thermal radiation, heat transfer through porous media (metal foam), and more.

Drawing on the collective expertise of leading researchers and experts in multiple fields, the book provides an in-depth understanding of the possibilities that emerge when these tools are applied to problems related to thermal sciences. AI is an ever-evolving discipline that has created new and groundbreaking opportunities to advance the mechanical engineering field, particularly in the area of numerical heat transfer. This volume, Advances in Numerical Heat Transfer, explores various ways AI is used in heat transfer to solve engineering problems.

This book will serve as an important resource for upper-level undergraduate students, researchers, engineers, and professionals, equipping them with the knowledge and inspiration to push the boundaries of the thermal sciences through AI-driven tools and techniques.

Contents

1. Physics-informed neural networks for solving partial differential equations. 2. Multi-Objective Optimization of Heat Transfer Problems. 3. CFD/HT Simulations and DNN Modelling of Conjugate Heat Transfer in Metal Foams. 4. Integrating Artificial Intelligence in Nanofluid Heat Transfer: A Deep Dive into Artificial Intelligence Applications. 5. Developing an Artificial Neural Network Algorithm for Heat and Mass Transfer Assessment in Ternary Hybrid Nanofluid Flow. 6. Physics Informed Deep Learning Approaches for Industrial Heat Exchangers. 7. AI based Analysis for Optimizing Radiative Jeffery-Hamel Flow for Cross-Diffusion Effects: A Physics Informed Machine Learning. 8. Machine Learning Process on Double Diffusive Convection in a Parallelogram Shaped Cavity.

最近チェックした商品