Artificial Intelligence for Air Quality Monitoring and Prediction (Ai Applications in Earth Science)

個数:

Artificial Intelligence for Air Quality Monitoring and Prediction (Ai Applications in Earth Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 301 p.
  • 言語 ENG
  • 商品コード 9781032683799
  • DDC分類 006.3

Full Description

This book is a comprehensive overview of advancements in artificial intelligence (AI) and how it can be applied in the field of air quality management. It explains the linkage between conventional approaches used in air quality monitoring and AI techniques such as data collection and preprocessing, deep learning, machine vision, natural language processing, and ensemble methods. The integration of climate models and AI enables readers to understand the relationship between air quality and climate change. Different case studies demonstrate the application of various air monitoring and prediction methodologies and their effectiveness in addressing real-world air quality challenges.

Features

A thorough coverage of air quality monitoring and prediction techniques.
In-depth evaluation of cutting-edge AI techniques such as machine learning and deep learning.
Diverse global perspectives and approaches in air quality monitoring and prediction.
Practical insights and real-world case studies from different monitoring and prediction techniques.
Future directions and emerging trends in AI-driven air quality monitoring.

This is a great resource for professionals, researchers, and students interested in air quality management and control in the fields of environmental science and engineering, atmospheric science and meteorology, data science, and AI.

Contents

1. Air Quality Monitoring (AQM) and Prediction: Transitioning from Conventional to AI Techniques. 2. Temporal Variations of Sulphur Dioxide Levels across India: A Biennial Assessment (2020-2021). 3. The Effectiveness of Machine Learning Techniques in Enhancing Air Quality Prediction. 4. Enhancing Environmental Resilience: Precision in Air Quality Monitoring through AI-Driven Real-Time Systems. 5. Forecasting Air Pollution with Artificial Intelligence: Recent Advancements at Global Scale and Future Perspectives. 6. Integrating AI into Air Quality Monitoring: Precision and Progress. 7. Application of AI-based Tools in Air Pollution Study. 8. Study of Extreme Weather Events in the Central Himalayan Region through Machine Learning and Artificial Intelligence: A Case Study. 9. Machine Learning Applications in Air Quality Management and Policies. 10. A Glimpse into Tomorrow's Air: Leveraging PM 2.5 with FP Prophet as a Forecasting Model. 11. Air Quality Forecast using Machine Learning Algorithms. 12. Deep Learning Approaches in Air Quality Prediction. 13. Incorporation of AI with Conventional Monitoring Systems. 14. A Comparative Evaluation of AI-Based Methods and Traditional Approaches for Air Quality Monitoring: Analyzing Pros and Cons. 15. ML Driven Hydrogen Yield Prediction for Sustainable Environment.

最近チェックした商品