Metaheuristics for Enterprise Data Intelligence (Advances in Metaheuristics)

個数:

Metaheuristics for Enterprise Data Intelligence (Advances in Metaheuristics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 146 p.
  • 言語 ENG
  • 商品コード 9781032683775
  • DDC分類 006.3

Full Description

With the emergence of the data economy, information has become integral to business excellence. Every enterprise, irrespective of its domain of interest, carries and processes a lot of data in their day-to-day activities. Converting massive datasets into insightful information plays an important role in developing better business solutions. Data intelligence and its analysis pose several challenges in data representation, building knowledge systems, issue resolution and predictive systems for trend analysis and decisionmaking. The data available could be of any modality, especially when data is associated with healthcare, biomedical, finance, retail, cybersecurity, networking, supply chain management, manufacturing, etc. The optimization of such systems is therefore crucial to leveraging the best outcomes and conclusions. To this end, AI-based nature-inspired optimization methods or approximation-based optimization methods are becoming very powerful. Notable metaheuristics include genetic algorithms, differential evolution, ant colony optimization, particle swarm optimization, artificial bee colony, grey wolf optimizer, political optimizer, cohort intelligence and league championship algorithm. This book provides a systematic discussion of AI-based metaheuristics application in a wide range of areas, including big data intelligence and predictive analytics, enterprise analytics, graph optimization algorithms, machine learning and ensemble learning, computer vision enterprise practices and data benchmarking.

Contents

Chapter 1 ◾ Terror Attacks Forecast Using Machine Learning and Neo4j Sandbox: A Review

Sagar Shinde, Suchitra Khoje, Ankit Raj and Lalitkumar Wadhwa

Chapter 2 ◾ 5G Evolution and Revolution: A Study

Namita K. Shinde, Chetan More, Payal Kadam and Vinod Patil

Chapter 3 ◾ Metaheuristic Algorithms and Its Application in Enterprise Data

Radhika D. Joshi, Sheetal Waghchaware and Rushikesh Dudhani

Chapter 4 ◾ Petrographic Image Classification Accuracy Improvement Using Improved Learning

Ashutosh Marathe, Tanuja Tewari and Falguni Vyas

Chapter 5 ◾ Data Visualization and Dashboard Design for Enterprise Intelligence

Nishikant Bhaskar Surwade, Bahubali Shiragapur and Anwar Hussain

Chapter 6 ◾ Beyond the Hype: Understanding the Potential of ChatGPT in the Articulation of Technical Papers

Neha Shaah

Chapter 7 ◾ Metaheuristics and Deep Learning in Lung Nodule Detection and Classification

Rama Vaibhav Kaulgud and Mandar Saundattikar

Chapter 8 ◾ An Improved Face Recognition Method Using Canonical Correlation Analysis

Ganesh D. Jadhav, Suhas Patil, Bhushan M. Borhade and Yogesh Shinde

Chapter 9 ◾ Guesswork to Results: How ML-Based A/B Testing Is Changing the Game

Namita K. Shinde, Payal Kadam, Aditya Choudhary, Bhavay Chopra and Krishnansh Awasthi

最近チェックした商品