変化点検出:理論と応用<br>Change Point Analysis : Theory and Application

個数:

変化点検出:理論と応用
Change Point Analysis : Theory and Application

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 236 p.
  • 言語 ENG
  • 商品コード 9781032649047
  • DDC分類 519.23

Full Description

Change point analysis is a crucial statistical technique for detecting structural breaks within datasets, applicable in diverse fields such as finance and weather forecasting. The authors of this book aim to consolidate recent advancements and broaden the scope beyond traditional time series applications to include biostatistics, longitudinal data analysis, high-dimensional data, and network analysis.

The book introduces foundational concepts with practical data examples from literature, alongside discussions of related machine learning topics. Subsequent chapters focus on mathematical tools for single- and multiple-change point detection along with statistical inference issues, which provide rigorous proofs to enhance understanding but assume readers have foundational knowledge in graduate-level probability and statistics. The book also expands the discussion into threshold regression frameworks linked to subgroup identification in modern statistical learning and apply change point analysis to functional data and dynamic networks—areas not comprehensively covered elsewhere.

Key Features:

Comprehensive Coverage of Diverse Applications: This book expands the scope of change point analysis to include biostatistics, longitudinal data, high-dimensional data, and network analysis. This broad applicability makes it a valuable resource for researchers and students across various disciplines
Integration of Theory and Practice: The book balances rigorous mathematical theory with practical applications by providing extensive computational examples using R. Each chapter features real-world data illustrations and discussions of relevant machine learning topics, ensuring that readers can see the relevance of theoretical concepts in applied settings
Accessibility for Students: The content is designed with graduate-level students in mind, providing clear explanations and structured guidance through complex mathematical tools. Rigorous proofs are included to facilitate understanding without overwhelming readers with overly advanced theories early on

The book incorporates computational results using R, showcasing various packages tailored for specific methods or problem domains while providing references for further exploration. By offering a selection of widely adopted methodologies relevant in scientific research as well as business contexts, this text aims to equip junior researchers with essential tools needed for their work in change point analysis.

Contents

1. Overview. 2. Single change point. 3. Multiple change points. 4. Interval estimation. 5. Regression models with change points. 6. Further Applications.

最近チェックした商品