Advances of Machine Learning for Knowledge Mining in Electronic Health Records

個数:

Advances of Machine Learning for Knowledge Mining in Electronic Health Records

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 270 p.
  • 言語 ENG
  • 商品コード 9781032526102
  • DDC分類 006.31

Full Description

The book explores the application of cutting-edge machine learning and deep learning algorithms in mining Electronic Health Records (EHR). With the aim of improving patient health management, this book explains the structure of EHR consisting of demographics, medical history, and diagnosis, with a focus on the design and representation of structured, semi-structured, and unstructured data.

Explains the design of organized, semi-structured, unstructured, and irregular time series data of electronic health records
Covers information extraction, standards for meta-data, reuse of metadata for clinical research, and organized and unstructured data
Discusses supervised and unsupervised learning in electronic health records
Describes clustering and classification techniques for organized, semi- structured, and unstructured data from electronic health records

This book is an essential resource for researchers and professionals in fields like computer science, biomedical engineering, and information technology, seeking to enhance healthcare efficiency, security, and privacy through advanced data analytics and machine learning.

Contents

1. An Introduction to Electronic Health Records 2. Challenges and Strategies for Extracting Secure Patterns by Using EHR 3. The Art of Organizing EHR Data: A Classification Journey Through Structured, Unstructured, and Semi-Structured Records 4. A blockchain Enabled Framework for Electronic Health Records 5. Cardio Vascular Disease Diagnosis using Deep Learning models 6. A Computational Analysis for the Diagnosis of Schizophrenia Disease Using Machine Learning Methods 7. Predicting Lung Cancer Using Supervised Algorithms:A Machine Learning Approach 8. Article summarising the application of Artificial Intelligence and Machine Learning Techniques to several forms of Electronic Health Records 9. Machine Learning Techniques to Predict the Risk of Chronic Obstructive Pulmonary Disease 10. Dynamic Learning Scheduling Algorithm and Multilayer Perceptron Model for Heart Disease Prediction System 11. Efficient Heart Disease Prediction using IBM Cloud Storage with Auto AI Service 12. Electronic Health Records-A survey

最近チェックした商品