Textual and contextual data analysis : A multivariate statistical approach using R (Chapman & Hall/crc Data Science Series)

個数:
  • 予約

Textual and contextual data analysis : A multivariate statistical approach using R (Chapman & Hall/crc Data Science Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781032502267

Full Description

Multidimensional statistical analysis of textual data is a powerful technique that enables researchers to uncover deeper insights into the context and meaning of documents. This book addresses the challenge of jointly analyzing textual and contextual data, presenting rigorous theoretical foundations alongside practical methodologies. By incorporating metadata and contextual information, readers can extract richer, more nuanced information from textual corpora, making this book an essential resource for statisticians, data scientists, and linguistics experts.

The book explores a wide range of textual data, from open-ended survey responses and political speeches to legal texts, literary works, and technical reports. It also examines the diverse contextual variables that shape these texts, such as sociodemographic characteristics, chronology, political affiliations, and external influences. Through real-world examples, readers will learn how to apply exploratory multivariate statistical methods to compare, characterize, and reveal the underlying structure of textual data. Each chapter builds on the previous one, offering a systematic approach to encoding, analyzing, and visualizing textual and contextual data. Topics include machine learning methods like latent semantic analysis and correspondence analysis, clustering techniques, restricted clustering defined by contextual data, and advanced visualization tools. The book also introduces methodologies for analyzing multilingual corpora and isolated texts, emphasizing the importance of discourse strategies and thematic contrasts.

This book is not only a guide to advanced statistical methods but also a practical toolkit for researchers working with diverse corpora. Whether analyzing legal databases, sensory evaluations, or political speeches, readers will find robust techniques to uncover patterns, relationships, and strategies within their data. By combining textual and contextual analysis, this book empowers readers to make meaningful comparisons and draw actionable conclusions.

KEY FEATURES:

• Comprehensive coverage of methods for jointly analyzing textual and contextual data.

• Practical applications to diverse corpora, including legal texts, political speeches, and sensory evaluations.

• Systematic comparison of machine learning methods like latent semantic analysis and correspondence analysis.

• Advanced visualization techniques, including interactive, 3D, and animated graphics.

• Methodologies for analyzing multilingual corpora and isolated texts, with a focus on discourse strategies.

Contents

Preface 1. Consideration of Additional Information Called Contextual Data 2. SVD-Based Methods in Textual Analysis: An Overview 3. Clustering Methods 4. Constrained Clustering Defined by the Contextual Data into the Analysis 5. Textual Data Visualization 6. Textual Data and Contextual Data Playing a Symmetric Role 7. Correspondence Analysis on a Generalized Aggregate Lexical Table 8. Structure and Organization of a Text 9. Extension of Multivariate Statistical Methods to Multilingual Corpus Bibliography Index List of Figures List of Tables

最近チェックした商品