Completely Regular Codes in Distance Regular Graphs (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

個数:

Completely Regular Codes in Distance Regular Graphs (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781032494449
  • DDC分類 511.5

Full Description

The concept of completely regular codes was introduced by Delsarte in his celebrated 1973 thesis, which created the field of Algebraic Combinatorics. This notion was extended by several authors from classical codes over finite fields to codes in distance-regular graphs. Half a century later, there was no book dedicated uniquely to this notion. Most of Delsarte examples were in the Hamming and Johnson graphs. In recent years, many examples were constructed in other distance regular graphs including q-analogues of the previous, and the Doob graph.

Completely Regular Codes in Distance Regular Graphs provides, for the first time, a definitive source for the main theoretical notions underpinning this fascinating area of study. It also supplies several useful surveys of constructions using coding theory, design theory and finite geometry in the various families of distance regular graphs of large diameters.

Features

Written by pioneering experts in the domain
Suitable as a research reference at the master's level
Includes extensive tables of completely regular codes in the Hamming graph
Features a collection of up-to-date surveys

Contents

1. Completely regular codes and equitable partitions. 2. Completely regular codes over finite fields. 3. Completely regular codes in the Johnson graph. 4. Codes over rings and modules. 5. Group actions on codes in graphs. 6. Some completely regular codes in Doob graphs. 7. Completely regular codes: tables of small parameters for binary and ternary Hamming graphs.

最近チェックした商品