ロバスト小地域推定:方法、理論、応用と未解決の問題<br>Robust Small Area Estimation : Methods, Theory, Applications, and Open Problems (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

個数:
  • 予約

ロバスト小地域推定:方法、理論、応用と未解決の問題
Robust Small Area Estimation : Methods, Theory, Applications, and Open Problems (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 257 p.
  • 言語 ENG
  • 商品コード 9781032488851
  • DDC分類 519.52

Full Description

In recent years there has been substantial and growing interest in small area estimation (SAE) that is largely driven by practical demands. Here, the term "small area" typically refers to a subpopulation or domain of interest for which a reliable direct estimate, based only on the domain-specific sample, cannot be produced due to small sample size in the domain.

Keywords in SAE are "borrowing strength". Because there are insufficient samples from the small areas to produce reliable direct estimates, statistical methods are sought to utilize other sources of information to do better than the direct estimates. A typical way of borrowing strength is via statistical modelling. On the other hand, there is no "free lunch". Yes, one can do better by borrowing strength, but there is a cost. This is the main topic discussed in this text.

Features

A comprehensive account of methods, applications, as well as some open problems related to robust SAE
Methods illustrated by worked examples and case studies using real data
Discusses some advanced topics including benchmarking, Bayesian approaches, machine learning methods, missing data, and classified mixed model prediction
Supplemented with code and data via a website

Robust Small Area Estimation: Methods, Applications, and Open Problems is primarily aimed at researchers and graduate students of statistics and data science and would also be suitable for geography and survey methodology researchers. The practical approach should help persuade practitioners, such as those in government agencies, to more readily adopt robust SAE methods. It could be used to teach a graduate-level course to students with a background in mathematical statistics.

Contents

1. Small Area Estimation: A Brief Overview. 2. SAE Methods Built on Weaker Assumptions. 3. Outlier Robustness. 4. Observed Best Prediction and Its Extensions. 5. More Flexible Models. 6. Model Selection and Diagnostics. 7. Other Topics.

最近チェックした商品