Data Science and Machine Learning : Mathematical and Statistical Methods, Second Edition (Chapman & Hall/crc Machine Learning & Pattern Recognition) (2ND)

個数:
  • 予約

Data Science and Machine Learning : Mathematical and Statistical Methods, Second Edition (Chapman & Hall/crc Machine Learning & Pattern Recognition) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 760 p.
  • 言語 ENG
  • 商品コード 9781032488684

Full Description

Praise for the first edition:

"In nine succinct but information-packed chapters, the authors provide a logically structured and robust introduction to the mathematical and statistical methods underpinning the still-evolving field of AI and data science."

- Joacim Rocklöv and Albert A. Gayle, International Journal of Epidemiology, Volume 49, Issue 6

"This book organizes the algorithms clearly and cleverly. The way the Python code was written follows the algorithm closely—very useful for readers who wish to understand the rationale and flow of the background knowledge."

- Yin-Ju Lai and Chuhsing Kate Hsiao, Biometrics, Volume 77, Issue 4

The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.

New in the Second Edition

This expanded edition provides updates across key areas of statistical learning:

Monte Carlo Methods: A new section introducing the regenerative rejection sampling—a simpler alternative to MCMC.
Unsupervised Learning: Inclusion of two multidimensional diffusion kernel density estimators, as well as the bandwidth perturbation matching method for the optimal data-driven bandwidth selection.
Regression: New automatic bandwidth selection for local linear regression.
Feature Selection and Shrinkage: A new chapter introducing the klimax method for model selection in high-dimensions.
Reinforcement Learning: A new chapter on contemporary topics such as policy iteration, temporal difference learning, and policy gradient methods, all complete with Python code.
Appendices: Expanded treatment of linear algebra, functional analysis, and optimization that includes the coordinate-descent method and the novel Majorization--Minimization method for constrained optimization.

Key Features:

Focuses on mathematical understanding.
Presentation is self-contained, accessible, and comprehensive.
Extensive list of exercises and worked-out examples.
Many concrete algorithms with Python code.
Full color throughout and extensive indexing.
A single-counter consecutive numbering of all theorems, definitions, equations, etc., for easier text searches.

Contents

Preface Notation 1 Importing, Summarizing, and Visualizing Data 2 Statistical Learning 3 Monte Carlo Methods 4 Unsupervised Learning 5 Regression 6 Feature Selection and Shrinkage 7 Reproducing Kernel Methods 8 Classification 9 Decision Trees and Ensemble Methods 10 Deep Learning 11 Reinforcement Learning A Linear Algebra B Functional Analysis C Multivariate Differentiation and Optimization D Probability and Statistics E Python Primer Bibliography Index

最近チェックした商品