Bayesian Statistical Methods : With Applications to Machine Learning (Chapman & Hall/crc Texts in Statistical Science) (2ND)

個数:
  • 予約

Bayesian Statistical Methods : With Applications to Machine Learning (Chapman & Hall/crc Texts in Statistical Science) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781032486321

Full Description

Bayesian Statistical Methods: With Applications to Machine Learning provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. Compared to others, this book is more focused on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models. This second edition includes a new chapter on Bayesian machine learning methods to handle large and complex datasets and several new applications to illustrate the benefits the Bayesian approach in terms of uncertainty quantification.

Readers familiar with only introductory statistics will find this book accessible as it includes many worked examples with complete R code and comparisons are presented with analogous frequentist procedures. The book can be used as a one-semester course for advanced undergraduate and graduate students, and can be used in courses comprised of undergraduate statistics majors, non-statistics graduate students from other disciplines such as engineering, ecology, and psychology. In addition to thorough treatment of the basic concepts of Bayesian inferential methods, the book covers many general topics:

· Advice on selecting prior distributions

· Computational methods including Markov chain Monte Carlo (MCMC) sampling

· Model-comparison and goodness-of-fit measures, including sensitivity to priors

To illustrate the flexibility of the Bayesian approaches for complex data structures, the latter chapters provide case studies covering advanced topics:

· Handling of missing and censored data

· Priors for high-dimensional regression models

· Machine learning models including Bayesian adaptive regression trees and deep learning

· Computational techniques for large datasets

· Frequentist properties of Bayesian methods

The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are made available on the book's website.

Contents

Preface 1 Basics of Bayesian inference 2 From prior information to posterior inference 3 Computational approaches 4 Linear models 5 Hypothesis testing 6 Model selection and diagnostics 7 Case studies using hierarchical modeling 8 Machine learning 9 Statistical properties of Bayesian methods Appendices Bibliography Index

最近チェックした商品